Skip to main content
Log in

Screening benzylpentazoles for replacing PhN5 as cyclo-N5 precursor by theoretical calculation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Benzylpentazole (B) and its derivatives (B-NH 2  ~ B-NF 2 ) with electron-donating group (−NH2, −NHMe, −NMe2, and−OH) and electron-withdrawing group (−NO2, −CN, −CF3 and −NF2) were studied using density functional theory to assess their potentials for replacing phenylpentazole (PhN 5 ) as cyclo-N5 precursor. The pyrolysis mechanisms of the N5 ring and the C─N bond connecting pentazole and benzyl, bond lengths, and atomic charge have been investigated for revealing the effects of substituents on stability and assessing the possibilities of benzylpentazoles as cyclo-N5 precursor. Substituents especially electron-withdrawing groups lower the N5 ring stability and the C─N bond stability of B simultaneously. Compared to PhN 5 , benzylpentazoles mostly possess higher activation energy for the N5 ring decomposition (81.2 ~ 101.7 kJ/mol), lower C─N bond dissociation energy (385.6 ~ 452.8 kJ/mol), and higher chemical stability (7.83 ~ 8.49 eV). B and B-NMe 2 with the highest N5 ring stability, appropriate C─N bond stability, and chemical stability are the most potential candidates for replacing PhN 5 as cyclo-N5 precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ghule VD, Radhakrishnan S, Jadhav PM (2011) Computational studies on tetrazole derivatives as potential high energy materials. Struct Chem 22(4):775–782

    Article  CAS  Google Scholar 

  2. Glukhovtsev MN, Schleyer PR, Maerker C (1993) Pentaaza-and pentaphosphacyclopentadienide anions and their lithium and sodium derivatives: structures and stabilities. J Phys Chem 97(31):8200–8206

    Article  CAS  Google Scholar 

  3. Benin V, Kaszynski P, Radziszewski G (2002) Arylpentazoles revisited: experimental and theoretical studies of 4-hydroxyphenylpentazole and 4-oxophenylpentazole anion. J Org Chem 67(4):1354–1358

    Article  CAS  Google Scholar 

  4. Gagliardi L, Orlandi G, Evangelisti S, Roos BO (2001) A theoretical study of the nitrogen clusters formed from the ions N3 , N5 +, and N5. J Chem Phys 114(24):10733–10737

    Article  CAS  Google Scholar 

  5. Zhang C, Sun C, Hu B, Yu C, Lu M (2017) Synthesis and characterization of the pentazolate anion cyclo-N5 in (N5)6(H3O)3(NH4)4Cl. Science 3535(6323):374–376

    Article  Google Scholar 

  6. Lein M, Frunzke J, Timoshkin A, Frenking G (2001) Iron bispentazole Fe (η5-N5)2, a theoretically predicted high-energy compound: structure, bonding analysis, metal–ligand bond strength and a comparison with the isoelectronic ferrocene. Chem Eur J 7(19):4155–4163

    Article  CAS  Google Scholar 

  7. Tang L, Guo H, Peng J, Ning P, Li K, Li J, Gu J, Li Q (2014) Structure and bonding of novel paddle-wheel diiridium polynitrogen compounds: a stronger iridiumeiridium bonding by density functional theory. J Organomet Chem 769:94–99

    Article  CAS  Google Scholar 

  8. Zhao JF, Li N, Li QS (2003) A kinetic stability study of MN5 (M= Li, Na, K, and Rb). Theor Chem Accounts 110(1):10–18

    Article  CAS  Google Scholar 

  9. Carlqvist P, Östmark H, Brinck T (2004) The stability of Arylpentazoles. J Phys Chem A 108:7463–7467

    Article  CAS  Google Scholar 

  10. Noyman M, Zilberg S, Haas Y (2009) Stability of polynitrogen compounds: the importance of separating the σ and π electron systems. J Phys Chem A 113(26):7376–7382

    Article  CAS  Google Scholar 

  11. Blanco F, Alkorta I, Elguero J (2008) The structure of alkali metal derivatives of azoles: N-σ versus π structures. J Phys Chem A 112(33):7582–7688

    Article  Google Scholar 

  12. Frunzke J, Lein M, Frenking G (2002) Structures, metal−ligand bond strength, and bonding analysis of Ferrocene derivatives with group-15 Heteroligands Fe(η5-E5)2 and FeCp(η5-E5) (E = N, P, As, Sb). A Theoretical Study. Organometallics 21(16):3351–3359

    Article  CAS  Google Scholar 

  13. Zhang XH, Li S, Li QS (2006) Characterizations of novel binuclear alkaline-earth metal compounds: M2n-N5)2 (M=Be and Mg, n = 1, 2; M=Ca, n = 2, 5). J Theor Comput Chem 05:475–487

    Article  Google Scholar 

  14. Tang LH, Guo HB, Li QS, Peng JH, Gu JJ, Xiao LB (2014) Characterizations of novel binuclear transition metal polynitrogen compounds: M2 (N5) 4 (M= Co, Rh and Ir). Adv Mater Res 924:233–252

    Article  CAS  Google Scholar 

  15. Zhang X, Yang J, Lu M, Gong X (2015) Structure, stability and intramolecular interaction of M (N 5) 2 (M= Mg, Ca, Sr and Ba): a theoretical study. RSC Adv 5(28):21823–21830

    Article  CAS  Google Scholar 

  16. Zhang X, Yang J, Lu M, Gong X (2014) Theoretical studies on stability and pyrolysis mechanism of salts formed by N5 and metallic cations Na+, Fe2+ and Ni2+. Struct Chem 26(3):785–792

    Article  CAS  Google Scholar 

  17. Vij A, Pavlovich JG, Wilson WW, Vij V, Christe KO (2002) Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5 . Angew Chem 114(16):3177–3180

    Article  Google Scholar 

  18. Östmark H, Wallin S, Brinck T, Carlqvist P, Claridge R, Hedlund E, Yudina L (2003) Detection of pentazolate anion (cyclo-N5 ) from laser ionization and decomposition of solid p-dimethylaminophenylpentazole. Chem Phys Lett 379(5):539–546

    Article  Google Scholar 

  19. Butler RN, Fox A, Collier S, Burke LA (1998) Pentazole chemistry: the mechanism of the reaction of aryldiazonium chlorides with azide ion at −80°C: concerted versus stepwise formation of arylpentazoles, detection of a pentazene intermediate, a combined 1H and 15N NMR experimental and ab initio theoretical study. J Chem Soc Perkin Trans 2(10):2243–2248

    Article  Google Scholar 

  20. Lu T, Chen FW (2012) Atomic dipole moment corrected Hirshfeld population method. J Theor Comput Chem 11(01):163–183

    Article  CAS  Google Scholar 

  21. Hammerl A, Klapötke TM, Schwerdtfeger P (2003) Azolylpentazoles as high-energy materials: a computational study. Chem Eur J 9(22):5511–5519

    Article  CAS  Google Scholar 

  22. Chen XF, Bu JH, Yu T, Lai WP, Ge ZX (2013) The stability of substituted Benzylpentazoles. Commun Comput Chem 1(2):118–123

    Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C02. Gaussian, Inc, Wallingford

    Google Scholar 

  24. Benson SW (1976) Thermochemical kinetics: methods for the estimation of thermochemical data and rate parameters. Wiley, New York

    Google Scholar 

  25. Yao XQ, Hou XJ, Wu GS, Xu YY, Xiang HW, Jiao H, Li YW (2002) Estimation of CC bond dissociation enthalpies of large aromatic hydrocarbon compounds using DFT methods. J Phys Chem A 106(31):7184–7189

    Article  CAS  Google Scholar 

  26. Shao J, Cheng X, Yang X (2005) Density functional calculations of bond dissociation energies for removal of the nitrogen dioxide moiety in some nitroaromatic molecules. J Mol Struct Theochem 755(1):127–130

    Article  CAS  Google Scholar 

  27. Fan XW, Ju XH, Xia QY, Xiao HM (2008) Strain energies of cubane derivatives with different substituent groups. J Hazard Mater 151(1):255–260

    Article  CAS  Google Scholar 

  28. Canneaux S, Bohr F, Hénon E (2014) KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results. J Comput Chem 35:82–93

    Article  CAS  Google Scholar 

  29. Bader RF (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928

    Article  CAS  Google Scholar 

  30. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  31. Butler RN, Hanniffy JM, Stephens JC, Burke LA (2008) A ceric ammonium nitrate N-dearylation of N-p-anisylazoles applied to pyrazole, triazole, tetrazole, and pentazole rings: release of parent azoles. Generation of unstable pentazole, HN5/N5 , in solution. J Org Chem 73(4):1354–1364

    Article  CAS  Google Scholar 

  32. Kamijo S, Jin T, Huo Z, Gyoung YS, Shim JG, Yamamoto Y (2003) Tetrazole synthesis via the palladium-catalyzed three component coupling reaction. Mol Divers 6(3–4):181–192

    CAS  Google Scholar 

  33. Geiger U, Elyashiv A, Fraenkel R, Zilberg S, Haas Y (2013) The Raman spectrum of dimethylaminophenyl pentazole (DMAPP). Chem Phys Lett 556:127–131

    Article  CAS  Google Scholar 

  34. Portius P, Davis M, Campbell R, Hartl F, Zeng Q, Meijer AJ, Towrie M (2013) Dinitrogen release from arylpentazole: a picosecond time-resolved infrared, spectroelectrochemical, and DFT computational study. J Phys Chem A 117(48):12759–12769

    Article  CAS  Google Scholar 

  35. Geiger U, Haas Y, Grinstein D (2014) The photochemistry of an aryl pentazole in liquid solutions: the anionic 4-oxidophenylpentazole (OPP). J Photochem Photobiol A Chem 277:53–61

    Article  CAS  Google Scholar 

  36. Zhang X, Yang J, Lu M, Gong X (2014) Theoretical studies on the stability of phenylpentazole and its substituted derivatives of–OH, −OCH3, −OC2H5 and –N(CH3)2. RSC Adv 4:56095–56101

    Article  CAS  Google Scholar 

  37. Zhang X, Yang J, Lu M, Gong X (2015) Pyridylpentazole and its derivatives: a new source of N5 ? RSC Adv 5(35):27699–27705

    Article  CAS  Google Scholar 

  38. Burke LA, Butler RN, Stephens JC (2001) Theoretical characterization of pentazole anion with metal counter ions. Calculated and experimental 15N shifts of aryldiazonium, −azide and -pentazole systems†. J Chem Soc Perkin Trans 2(9):1679–1684

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Basic and Frontier Technical Research Project of Henan Province of China, No. 152300410228 and the University Innovation Team Project in Henan Province, No. 15IRTSTHN004.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueli Zhang or Guoqun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ma, C., Zhang, Y. et al. Screening benzylpentazoles for replacing PhN5 as cyclo-N5 precursor by theoretical calculation. Struct Chem 29, 267–274 (2018). https://doi.org/10.1007/s11224-017-1026-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1026-8

Keywords

Navigation