New coordination modes of iminodiacetamide type ligands in palladium(II) complexes: crystallographic and DFT studies

Abstract

The reactions of N-alkyliminodiacetamide derivatives, namely N-ethyliminodiacetamide (CH3CH2N(CH2CONH2)2; Etimda) and N-isopropyliminodiacetamide (CH3)2CHN(CH2CONH2)2; i-Primda), with sodium tetrachloropalladate(II) in aqueous solutions were investigated. Three new palladium(II) complexes, [Pd(Etimda−H)2]∙2H2O (1), [Pd(i-Primda−H)2]∙2H2O (2) and [PdCl2(i-Primda)] (3), were obtained and characterized by X-ray structural analysis, infrared spectroscopy and thermal analysis (TGA). The square planar coordination environments around the palladium(II) ions in complexes 1 and 2 consist of two N,N′-bidentate N-alkyliminodiacetamidato ligands, with imino N atoms in trans-position. The complex 3 also exhibits a square planar coordination environment around Pd(II), but with two chloride ions and one neutral N-isopropyliminodiacetamide ligand bound in an N,O′-bidentate coordination mode. The described coordination modes, as well as the presence of deprotonated amide groups in ligands in 1 and 2, are found for the first time in palladium(II) complexes with iminodiacetamide type ligands. The molecular geometries and infrared spectra of these three complexes were also modelled using DFT calculations, at the BP86-D3/def2-TZVPP/PCM level of theory. The RMSD values suggest a good agreement of the calculated and experimental geometries. A QTAIM analysis suggests a qualitative correlation between bond lengths and energy densities, also supported by an NBO analysis. The dimer interaction energy between complex units was estimated at about −15 kcal/mol for all complexes.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Bell CF (1977) Principles and applications of metal chelation. Oxford Chemistry Series, Clarendon Press, Oxford University Press, Oxford

  2. 2.

    Sekizaki M (1974). Bull Chem Soc Jpn 47:1447–1450

    CAS  Article  Google Scholar 

  3. 3.

    Sekizaki M (1976). Acta Crystallogr B 32:1568–1570

    Article  Google Scholar 

  4. 4.

    Sekizaki M (1981). Bull Chem Soc Jpn 54:3861–3862

    CAS  Article  Google Scholar 

  5. 5.

    Clayden J, Greeves N, Warren S, Wothers P (2001) Organic chemistry. Oxford University Press, Oxford,

    Google Scholar 

  6. 6.

    Tsuji J (2004) Palladium reagents and catalysts. Wiley, Chichester,

    Google Scholar 

  7. 7.

    Abu-Surrah AS, Al-Sa’doni HH, Abdalla MY (2008). Cancer Therapy 6:1–10

    CAS  Google Scholar 

  8. 8.

    Smrečki N, Kukovec B-M, Đaković M, Popović Z (2015). Polyhedron 93:106–117

    Article  Google Scholar 

  9. 9.

    Smrečki N, Stilinović V, Merkaš M, Lučić A, Kukovec B-M, Popović Z (2016). Aust J Chem 69:896–904

    Google Scholar 

  10. 10.

    Smrečki N, Stilinović V, Jović O, Kukovec B-M, Popović Z (2017). Inorg Chim Acta 462:57–63

    Article  Google Scholar 

  11. 11.

    Smrečki N, Jović O, Molčanov K, Kukovec B-M, Kekez I, Matković-Čalogović D, Popović Z (2017). Polyhedron 130:115–126

    Article  Google Scholar 

  12. 12.

    Ran J-W, Pei J (2013). Acta Crystallogr E69:m325–m325

    Google Scholar 

  13. 13.

    Deng X-H, Nie Q-J, Zhu F-J (2013). Acta Crystallogr E69:m89–m89

    Google Scholar 

  14. 14.

    Clapp LA, Siddons CJ, Van Deerver DG, Reibenspies JH, Jones SB, Hancock RD (2006) Dalton Trans 2001–2007

  15. 15.

    Smith DA, Sucheck S, Pinkerton A (1992) J Chem Soc Chem Commun 367–368

  16. 16.

    Claudio ES, Horst MA, Forde CE, Stern CL, Zart MK, Godwin HA (2000). Inorg Chem 39:1391–1397

    CAS  Article  Google Scholar 

  17. 17.

    Clapp LA, Siddons CJ, Whitehead JR, Van Derveer DG, Rogers RD, Griffin ST, Jones SB, Hancock RD (2005). Inorg Chem 44:8495–8502

    CAS  Article  Google Scholar 

  18. 18.

    Burdinski D, Pikkemaat JA, Lub J, de Peinder P, Garrido LN, Weyhemuller T (2009). Inorg Chem 48:6692–6712

    CAS  Article  Google Scholar 

  19. 19.

    Krot K, Liamas-Saiz AL, Vembu N, Nollan KB (2007). Z Anorg Allg Chem 633:1900–1910

    CAS  Article  Google Scholar 

  20. 20.

    Skrzypczak-Jankun E, Smith DA (1994). Acta Crystallogr C50:1585–1588

    CAS  Google Scholar 

  21. 21.

    CrysAlisPro (2014) Agilent Technologies, Yarnton, Oxfordshire, England. Version 1.171.37.35

  22. 22.

    Sheldrick GM (2008). Acta Crystallogr A64:112–122

    Article  Google Scholar 

  23. 23.

    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008). J Appl Crystallogr 41:466–470

    CAS  Article  Google Scholar 

  24. 24.

    Smrečki N, Rončević I, Popović Z (2016). Aust J Chem 69:1285–1291

    Article  Google Scholar 

  25. 25.

    Weigend F, Ahlrichs R (2005). Phys Chem Chem Phys 7:3297–2305

    CAS  Article  Google Scholar 

  26. 26.

    Weigend F (2006). Phys Chem Chem Phys 8:1057–1065

    CAS  Article  Google Scholar 

  27. 27.

    Cramer CJ, Truhlar DG (2009). Phys Chem Chem Phys 11:10757–10816

    CAS  Article  Google Scholar 

  28. 28.

    Steinmetz M, Grimme S (2013). ChemistryOpen 2:115–124

    CAS  Article  Google Scholar 

  29. 29.

    Raoufmoghaddam S, Mannathan S, Minnaard AJ, de Vries JG, Reek JN (2015). Chemistry 21:18811–18820

    CAS  Article  Google Scholar 

  30. 30.

    Goerigk L, Grimme S (2011). Phys Chem Chem Phys 13:6670–6688

    CAS  Article  Google Scholar 

  31. 31.

    Tsipis AC (2014). Coord Chem Rev 272:1–29

    CAS  Article  Google Scholar 

  32. 32.

    Schlegel HB, McDouall JJ (1991) In: Ögretir C, Csizmadia IG (eds) Computational advances in organic chemistry. Kluwer Academic, The Netherlands, pp. 167–185

    Google Scholar 

  33. 33.

    Tomasi J, Mennucci B, Cammi R (2005). Chem Rev 105:2999–3093

    CAS  Article  Google Scholar 

  34. 34.

    Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford

  35. 35.

    AIMAll (Version 17.01.25), Todd A. Keith (2017) TK Gristmill Software, Overland Park KS, USA, (aim.tkgristmill.com)

  36. 36.

    NBO 6.0., Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) Theoretical Chemistry Institute, University of Wisconsin, Madison

  37. 37.

    Yang L, Powell DR, Houser RH (2007) Dalton Trans 955–964

  38. 38.

    Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, New York,

    Google Scholar 

  39. 39.

    Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, part B, 6th edn. Wiley, Hoboken,

    Google Scholar 

  40. 40.

    Pandey KK, Patidar P, Vishwakarma R (2014). Eur J Inorg Chem 18:2916–2923

    Article  Google Scholar 

  41. 41.

    Weymuth T, Couzijn EPA, Chen P, Reiher M (2014). J Chem Theory Comput 10:3092–3103

    CAS  Article  Google Scholar 

  42. 42.

    Pirc G, Stare J, Mavri J (2010). J Chem Phys 132:224506–224513

    Article  Google Scholar 

  43. 43.

    Stare J, Mavri J, Grdadolnik J, Zidar J, Maksić ZB, Vianello R (2011). J Phys Chem B 115:5999–6010

    CAS  Article  Google Scholar 

  44. 44.

    Brela M, Stare J, Pirc G, Sollner-Dolenc M, Wojcik MJ, Mavri J (2012). J Phys Chem B 116:4510–4518

    CAS  Article  Google Scholar 

  45. 45.

    Smrečki N, Jović O, Stilinović V, Kukovec B-M, Đaković M, Popović Z (2016). Inorg Chim Acta 453:95–103

    Article  Google Scholar 

  46. 46.

    Kukovec B-M, Kodrin I, Mihalić Z, Popović Z (2011). Inorg Chim Acta 378:154–162

    CAS  Article  Google Scholar 

  47. 47.

    Weinhold F (1998) Natural Bond Orbital Methods. In: Schleyer P v R (ed) Encyclopedia of Computational Chemistry, vol 3, pp. 1792–1811

    Google Scholar 

  48. 48.

    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford,

    Google Scholar 

  49. 49.

    Koch U, Popelier PLA (1995). J Phys Chem 99:9747–9754

    CAS  Article  Google Scholar 

  50. 50.

    Dimić D, Petković M (2015). Int J Quantum Chem 116:27–34

    Google Scholar 

  51. 51.

    Smrečki N, Kukovec B-M, Jazwinski J, Liu Y, Zhang J, Mikecin A-M, Popović Z (2014). J Organomet Chem 760:224–230

    Article  Google Scholar 

  52. 52.

    Smrečki N, Kukovec B-M, Rotim K, Oršolić D, Jović O, Rončević T, Režić Mužinić N, Vinković M, Popović Z (2017). Inorg Chim Acta 462:64–74

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Foundation of the Croatian Academy of Sciences and Arts (year 2015/2016.) and the Croatian Science Foundation (Grant No. 7444).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Neven Smrečki or Boris-Marko Kukovec or Igor Rončević.

Electronic supplementary material

GA curves for the complexes (recorded in the oxygen). Mol2 files containing energies and geometries of the modelled complexes 1–3.

CCDC 1548186-1,548,188 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif (or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223-336,033; email: deposit@ccdc.cam.ac.uk).

ESM 1

(DOC 100 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smrečki, N., Kukovec, BM., Rončević, I. et al. New coordination modes of iminodiacetamide type ligands in palladium(II) complexes: crystallographic and DFT studies. Struct Chem 29, 195–206 (2018). https://doi.org/10.1007/s11224-017-1018-8

Download citation

Keywords

  • Palladium(II)
  • N-alkyliminodiacetamide
  • Crystal structure
  • IR spectroscopy
  • DFT calculations