Skip to main content
Log in

Tautomerism in acyl-pyrazolones and in a novel photolysis product—importance and impact of the accurate localization of hydrogen atoms in crystal structures

Structural Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 22 August 2017

This article has been updated

Abstract

Acyl-pyrazolones exist in four different tautomeric forms (two keto and two enol) in crystal structures. Routine crystal structure refinements using an independent atom model and routine isolated-molecule calculations fail in locating the mobile hydrogen atoms accurately in 22 investigated acyl-pyrazolone examples. However, a combination of both within the framework of quantum crystallography represented by the method of Hirshfeld atom refinement accurately locates the mobile hydrogen atom in a resonance-assisted hydrogen bond of title compound 3, a novel photolysis product. The impact of the hydrogen atom position on the resonance system of the non-hydrogen framework of the various tautomers is discussed, and the importance of intermolecular interactions for the positioning of the hydrogen atom is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 22 August 2017

    An erratum to this article has been published.

References

  1. Antonov L (2013) Tautomerism: methods and theories. John Wiley & Sons,

  2. Ädelroth P (2006) Special issue on proton transfer in biological systems Biochimica et Biophysica Acta (BBA)-Bioenergetics 1757(8):867–870

    Article  Google Scholar 

  3. Geraldes C, Barros M, Maycock C, Silva M (1990) The preferential direction of enolization of some asymmetric 1, 3-dicarbonyl compounds in solution: a study by multinuclear NMR spectroscopy J Mol Struct 238:335–346

    Article  CAS  Google Scholar 

  4. Allen G, Dwek RA (1966) An nmr study of keto–enol tautomerism in β-diketones. Journal of the Chemical Society B, Physical Organic, pp. 161–163

    Google Scholar 

  5. Zheglova D, Denkov N, Kol'tsov A (1984) Influence of intramolecular hydrogen bonds on the tautomeric equilibrium of 1,3-diketones J Mol Struct 115:371–374

    Article  CAS  Google Scholar 

  6. Jones RD (1976) The crystal structure of the enol tautomer of 1,3-diphenyl-1,3-propanedione (dibenzoylmethane) by neutron diffraction Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 32(6):1807–1811

  7. Gilli G, Gilli P (2000) Towards an unified hydrogen-bond theory J Mol Struct 552(1):1–15

    Article  CAS  Google Scholar 

  8. Cleland W (2000) Low-barrier hydrogen bonds and enzymatic catalysis Arch Biochem Biophys 382(1):1–5

    Article  CAS  Google Scholar 

  9. Cleland WW, Kreevoy MM (1994) Low-barrier hydrogen bonds and enzymic catalysis Science 264(5167):1887–1887

    Article  CAS  Google Scholar 

  10. Schiøtt B, Iversen BB, Madsen GKH, Larsen FK, Bruice TC (1998) On the electronic nature of low-barrier hydrogen bonds in enzymatic reactions Proc Natl Acad Sci 95(22):12799–12802

    Article  Google Scholar 

  11. CCDC (2014) ConQuest version 1.17- CSD version 5.36 (May 2015)

  12. Akama Y, Shiro M, Ueda T, Kajitani M (1995) Keto and enol tautomers of 4-benzoyl-3-methyl-1-phenyl-5 (2H)-pyrazolone Acta Crystallogr Sect C: Cryst Struct Commun 51(7):1310–1314 (CCDC: YUYDOL ( enol ), DEBFAR02 ( keto ))

    Article  Google Scholar 

  13. Gloe K, Uzoukwu BA, Rademacher O (2000) 4-acetyl-5-methyl-2-phenyl-1, 2-dihydro-3H-pyrazol-3-one hydrate Acta Crystallogr Sect C: Cryst Struct Commun 56(12):e580–e581 (CCDC: XEGVEK)

    Article  Google Scholar 

  14. Holzer W, Mereiter K, Plagens B (1999) 4-acyl-5-methyl-2-phenylpyrazolones: NMR and X-ray structure investigations Heterocycles 2(50):799–818 (CCDC: CIQFEN ( enol ), CIQDUB ( enol ), CIQFAJ ( keto ))

    Article  Google Scholar 

  15. Guard JA, Steel PJ (1994) Heterocyclic tautomerism. VII. X-ray structures of two crystalline tautomers of 4-cinnamoyl-1, 3-dimethylpyrazol-5-one Aust J Chem 47(8):1453–1459 (CCDC: HESTUU ( enol ), HESTOO ( keto ))

    Article  CAS  Google Scholar 

  16. Kataeva ON, Gubaidullin AT, Litvinov IA, Lodochnikova OA, Islamov LR, Movchan AI, Chmutova GA (2002) The structure of 1-phenyl-3-benzoylamino-4-benzoylpyrazol-2-in-5-one J Mol Struct 610(1):175–179 (CCDC: MUGQIO)

    Article  CAS  Google Scholar 

  17. Cingolani A, Marchetti F, Pettinari C, Pettinari R, Skelton BW, White AH (2004) A 4-acyl-5-pyrazolone ligand (HQ) in N-unidentate coordination mode in a Rh(CO)2Cl (HQ)-type complex Inorg Chem Commun 7(2):235–237 (CCDC: ASELEP)

  18. Pettinari R, Pettinari C, Marchetti F, Skelton BW, White AH, Bonfili L, Cuccioloni M, Mozzicafreddo M, Cecarini V, Angeletti M (2014) Arene–ruthenium (II) acylpyrazolonato complexes: apoptosis-promoting effects on human cancer cells J Med Chem 57(11):4532–4542 (CCDC: ZOJZAB)

    Article  CAS  Google Scholar 

  19. Pettinari C, Marchetti F, Pettinari R, Natanti P, Drozdov A, Semenov S, Troyanov SI, Zolin V (2006) Syntheses, spectroscopic characterization and X-ray structural studies of lanthanide complexes with adamantyl substituted 4-acylpyrazol-5-one Inorg Chim Acta 359(12):4063–4070 (CCDC: MELNEX)

    Article  CAS  Google Scholar 

  20. Remya P, Suresh C, Reddy M (2007) Rapid reduction and complexation of vanadium by 1-phenyl-3-methyl-4-toluoyl-5-pyrazolone: spectroscopic characterization and structure modelling Polyhedron 26(17):5016–5022 (CCDC: VIMPAJ)

    Article  CAS  Google Scholar 

  21. Cingolani A, Effendy, Marchetti F, Pettinari C, Pettinari R, Skelton BW, White AH (2002) First structurally characterized silver (I) derivatives with nonfluorinated β-Diketones Inorg Chem 41(5):1151–1161 (C2/c phase; CCDC: ADURIA)

  22. Sheikh TU, Khan MA, Arshad MN, Khan IU, Stoeckli-Evans H (2009) 1-(5-Hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl) ethanone: a new monoclinic polymorph Acta Crystallogr Sect E: Struct Rep Online 65(2):o330–o330 (P21/n phase; CCDC: ADURIA01)

    Article  CAS  Google Scholar 

  23. Shi M, Li F, Yi T, Zhang D, Hu H, Huang C (2005) Tuning the triplet energy levels of pyrazolone ligands to match the 5D0 level of europium (III) Inorg Chem 44(24):8929–8936 (CCDC: RAXXUK)

    Article  CAS  Google Scholar 

  24. Begantsova YE, Bochkarev LN, Malysheva IP, Stolyarova NE, Kurskii YA, Lopatin MA, Baranov EV, Ilichev VA, Abakumov GA, Bochkarev MN (2011) Synthesis, photo-and electroluminescent properties of norbornene based platinum-containing copolymers Synth Met 161(11):1043–1050 (CCDC: ASUPUA)

    Article  CAS  Google Scholar 

  25. Uzoukwu AB, Al-Juaid SS, Hitchcock PB, Smith JD (1993) The synthesis and crystal structures of 1-phenyl-3-methyl-4-butanolypyrazol-5-one and of two pyrazolonato complexes of iron Polyhedron 12(22):2719–2724 (CCDC: LELDIP)

    Article  CAS  Google Scholar 

  26. O'Connell M, Ramsay C, Steel P (1985) Heterocyclic Tautomerism. II. 4-Acylpyrazolones. X-ray crystal structures of 4-benzoyl-5-methyl-2-phenylpyrazol-3 (2H)-one and 4-Acetoacetyl-3-methyl-1-phenylpyrazol-5-ol Aust J Chem 38(3):401–409 (CCDC: DEBFAR, DEBFEV)

    Article  Google Scholar 

  27. Marchetti F, Marinelli A, Pettinari C, Skelton BW, White AH (2011) Binuclear diorganotin (IV) complexes with bis (O, O′-4-acyl-5-pyrazolonato) bis (bidentate) ligands Inorg Chim Acta 366(1):388–393 (CCDC: ULUFOX)

    Article  Google Scholar 

  28. Deng G-M, Zhang H-M, Ou-Yang L-Q, Tong Q-Z, Li S (2012) [1-(4-Chlorophenyl)-5-hydroxy-3-phenyl-1H-pyrazol-4-yl](thiophen-2-yl) methanone Acta Crystallogr Sect E: Struct Rep Online 68(6):o1639–o1639 (CCDC: PAXWUI)

    Article  CAS  Google Scholar 

  29. Li J-Z, Zhang H-Q, Li H-X, Che P-Z, Wang T-C (2007) 1-(4-Chlorophenyl)-4-(2-furoyl)-3-(2-furyl)-1H-pyrazol-5-ol Acta Crystallogr Sect E: Struct Rep Online 63(3):o1289–o1290 (CCDC: DEYSIK)

    Article  CAS  Google Scholar 

  30. Elguero J (2011) Polymorphism and desmotropy in heterocyclic crystal structures Cryst Growth Des 11(11):4731–4738

    Article  CAS  Google Scholar 

  31. Desiraju GR (2008) Polymorphism: the same and not quite the same Crystal Growth Des 8(1):3–5

    Article  CAS  Google Scholar 

  32. Marchetti F, Pettinari C, Pettinari R (2005) Acylpyrazolone ligands: synthesis, structures, metal coordination chemistry and applications Coord Chem Rev 249(24):2909–2945

    Article  CAS  Google Scholar 

  33. Malaspina LA, Edwards AJ, Woinska M, Jayatilaka D, Turner MJ, Price JR, Herbst-Irmer R, Sugimoto K, Nishibori E, Grabowsky S (2017) Predicting the position of the hydrogen atom in the short intramolecular hydrogen bond of the hydrogen maleate anion from geometric correlations Cryst Growth Des 17:3812–3825

  34. Hoser AA, Dominiak PM, Woźniak K (2009) Towards the best model for H atoms in experimental charge-density refinement Acta Crystallogr A: Found Crystallogr 65(4):300–311

    Article  CAS  Google Scholar 

  35. Allen FH, Bruno IJ (2010) Bond lengths in organic and metal-organic compounds revisited: X—H bond lengths from neutron diffraction data Acta Crystallogr Sect B: Struct Sci 66(3):380–386

    Article  CAS  Google Scholar 

  36. Lusi M, Barbour LJ (2011) Determining hydrogen atom positions for hydrogen bonded interactions: a distance-dependent neutron-normalized method Crystal Growth Des 11(12):5515–5521

    Article  CAS  Google Scholar 

  37. Deringer VL, Hoepfner V, Dronskowski R (2012) Accurate hydrogen positions in organic crystals: assessing a quantum-chemical aide Cryst Growth Des 12(2):1014–1021

    Article  CAS  Google Scholar 

  38. Dittrich B, Lübben J, Mebs S, Wagner A, Luger P, Flaig R (2017) Accurate bond lengths to hydrogen atoms from single-crystal X-ray diffraction by including estimated hydrogen ADPs and comparison to neutron and QM/MM benchmarks Chem Eur J 23:4605–4614

    Article  CAS  Google Scholar 

  39. Dittrich B, Hübschle C, Pröpper K, Dietrich F, Stolper T, Holstein J (2013) The generalized invariom database (GID) Acta Crystallogr Sect B: Struct Sci Cryst Eng Mater 69(2):91–104

    Article  CAS  Google Scholar 

  40. Jarzembska KN, Dominiak PM (2012) New version of the theoretical databank of transferable aspherical pseudoatoms, UBDB2011—towards nucleic acid modelling Acta Crystallogr A: Found Crystallogr 68(1):139–147

    Article  CAS  Google Scholar 

  41. Domagała S, Fournier B, Liebschner D, Guillot B, Jelsch C (2012) An improved experimental databank of transferable multipolar atom models–ELMAM2. Construction details and applications Acta Crystallogr A: Found Crystallogr 68(3):337–351

    Article  Google Scholar 

  42. Jayatilaka D, Dittrich B (2008) X-ray structure refinement using aspherical atomic density functions obtained from quantum-mechanical calculations Acta Crystallogr A: Found Crystallogr 64(3):383–393

    Article  CAS  Google Scholar 

  43. Capelli SC, Bürgi HB, Dittrich B, Grabowsky S, Jayatilaka D (2014) Hirshfeld atom refinement IUCrJ 1(5):361–379

    Article  CAS  Google Scholar 

  44. Woińska M, Grabowsky S, Dominiak PM, Woźniak K, Jayatilaka D (2016) Hydrogen atoms can be located accurately and precisely by x-ray crystallography Sci Adv 2(5):e1600192

    Article  Google Scholar 

  45. Woińska M, Jayatilaka D, Spackman MA, Edwards AJ, Dominiak PM, Wozniak K, Nishibori E, Sugimoto K, Grabowsky S (2014) Hirshfeld atom refinement for modelling strong hydrogen bonds Acta Crystallogr Section A: Found Adv 70(5):483–498

    Article  Google Scholar 

  46. Grabowsky S, Genoni A, Bürgi HB (2017) Quantum crystallography Chem Sci 8:4159–4176

    Article  CAS  Google Scholar 

  47. Massa L, Huang L, Karle J (1995) Quantum crystallography and the use of kernel projector matrices Int J Quantum Chem 56(S29):371–384

    Article  Google Scholar 

  48. Huang L, Massa L, Karle J (1999) Quantum crystallography applied to crystalline maleic anhydride Int J Quantum Chem 73(5):439–450

    Article  CAS  Google Scholar 

  49. Sheldrick GM (2008) A short history of SHELX Acta Crystallogr Section A 64(1):112–122

    Article  CAS  Google Scholar 

  50. Wege D (1998) In: Thummel RP (ed) Advances in theoretically interesting molecules, vol 4. JAI Press Inc., Stamford, Connecticut, and London, U.K.

  51. Hixson SS, Mariano PS, Zimmerman HE (1973) Di-. pi.-methane and oxa-di-. pi.-methane rearrangements Chem Rev 73(5):531–551

    Article  CAS  Google Scholar 

  52. Karichiappan K, Wege D (2000) Naphtho[2,3-c]furan-4,9-dione and a further exploratory approach to the ring system of Ventilone A Aust J Chem 53(9):743–747

  53. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities Theor Chim Acta 44(2):129–138

    Article  CAS  Google Scholar 

  54. Hirshfeld FL (1977) XVII. Spatial partitioning of charge density Israel J Chem 16(2–3):198–201

    Article  CAS  Google Scholar 

  55. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D. 01. Gaussian, Inc., Wallingford CT,

    Google Scholar 

  56. Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: natural bond orbital analysis program J Comput Chem 34(16):1429–1437

    Article  CAS  Google Scholar 

  57. Koritsanszky T, Howard S, Macchi P, Gatti C, Farrugia L, Mallinson P, Volkov A, Su Z, Richter T, Hansen N (2003) XD (version 4.10, July), a computer program package for multipole refinement and analysis of electron densities from diffraction data. Free University of Berlin, Germany,

    Google Scholar 

  58. Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) CrystalExplorer (Version 3.1)

  59. Miao Fangming LX, Yongqiang L (1991) Wuji Huaxue Xuebao Chinese J Inorg Chem 7(6):129–132 (CCDC: DEBFAR01)

    Google Scholar 

  60. Steiner T (2002) The hydrogen bond in the solid state Angew Chem Int Ed 41(1):48–76

    Article  CAS  Google Scholar 

  61. Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions Phys Chem Chem Phys 13(14):6670–6688

    Article  CAS  Google Scholar 

  62. Spackman MA, Byrom PG (1997) A novel definition of a molecule in a crystal Chem Phys Lett 267(3–4):215–220

    Article  CAS  Google Scholar 

  63. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis Cryst Eng Comm 11(1):19–32

    Article  CAS  Google Scholar 

  64. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces Chem Commun 37:3814–3816

    Article  Google Scholar 

  65. Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals Cryst Eng Comm 4(66):378–392

    Article  CAS  Google Scholar 

  66. Matta CF, Hernández-Trujillo J, Tang TH, Bader RFW (2003) Hydrogen–hydrogen bonding: a stabilizing interaction in molecules and crystals Chem Eur J 9:1940–1951

    Article  CAS  Google Scholar 

  67. Weinhold F, Landis CR (2001) Natural bond orbitals and extensions of localized bonding concepts Chem Educ Res Pract 2(2):91–104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge useful consultations with Prof. C. Pettinari of the University of Camerino in respect of accessing/acquiring data on relevant compounds. S. Grabowsky thanks the German Research Foundation (Deutsche Forschungsgemeinschaft DFG) for funding within the Emmy Noether scheme GR 4451/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Grabowsky.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This paper is dedicated to Professor Louis J. Massa on the occasion of his Festschrift.

The original version of this article was revised: a modification has been made to the layout of Table 2.

Allan H. White is deceased.

An erratum to this article is available at https://doi.org/10.1007/s11224-017-1023-y.

Electronic supplementary material

ESM 1

(CIF 320 kb)

ESM 2

(CIF 15 kb)

ESM 3

(FCF 93 kb)

ESM 4

(CIF 23 kb)

ESM 5

(FCF 269 kb)

ESM 6

(CIF 30 kb)

ESM 7

(FCF 216 kb)

ESM 8

(CIF 194 kb)

ESM 9

(CIF 20 kb)

ESM 10

(FCF 164 kb)

ESM 11

(CIF 21 kb)

ESM 12

(FCF 273 kb)

ESM 13

(CIF 25 kb)

ESM 14

(FCF 268 kb)

ESM 15

(PDF 916 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malaspina, L.A., White, A.H., Wege, D. et al. Tautomerism in acyl-pyrazolones and in a novel photolysis product—importance and impact of the accurate localization of hydrogen atoms in crystal structures. Struct Chem 28, 1343–1357 (2017). https://doi.org/10.1007/s11224-017-1005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1005-0

Keywords

Navigation