Skip to main content
Log in

A structural and computational study of citrulline in biochemical reactions

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Citrulline, a non-essential amino acid, is used therapeutically in mitochondrial diseases, especially since it is a well-tolerated medicinal compound. Athletes use citrulline to enhance performance during sustained exercise activity. In the body, citrullination is an important biochemical reaction in proteins which involves post-translational hydrolysis of arginine residues to form citrulline residues and ammonia. Proteins modified through extensive citrullination play a key role in the pathogenesis of a variety of diseases such as multiple sclerosis, autoimmune disorders, and potentially cancer. In our studies, we describe the experimental results of a structure determination using highly accurate X-ray data that were collected at low temperature (125 K). Through intensive crystallization studies, we obtained the delta polymorph of citrulline. There are seven strong N-H…O hydrogen bonds, an unusually high number for a small molecule. We utilized computational methods to understand the complex biochemistry of citrulline/arginine. Our DFT investigation offers clues for describing and understanding the complex biochemistry of citrulline/arginine. In addition, it is evident that the hydrolysis of arginine to citrulline is energetically favored and can be considered a driving force for important citrullination reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Reaction 1
Reaction 2
Reaction 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Oketch-Rabah HA, Roe AL, Gurley BJ, Griffiths JC, Giancaspro GI (2016) The importance of quality specifications in safety assessments of amino acids: the cases of L-tryptophan and L-citrulline J Nutr 146:2643S–2651S

    Article  CAS  Google Scholar 

  2. Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals Biochem J 298:249–258

    Article  CAS  Google Scholar 

  3. Hecker M, Sessa WC, Harris HJ, Anggard EE, Vane JR (1990) The metabolism of l-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle l-citrulline to l-arginine Proc Natl Acad Sci U S A 87:8612–8616

    Article  CAS  Google Scholar 

  4. El-Hattab AW, Emrick LT, Chanprasert S, Craigen WJ, Scaglia F (2014) Mitochondria: role of citrulline and arginine supplementation in MELAS syndrome Int J Biochem Cell Biol 48:85–91

    Article  CAS  Google Scholar 

  5. El-Hattab AW, Emrick LT, Hsu JW, Chanprasert S, Almannai M, Graigen WJ, Jahoor F, Scaglia F (2016) Impaired nitric oxide production in children with MELAS syndrome and the effect of arginine and citrulline supplementation Mol Genet Metab 117(4):407–412

    Article  CAS  Google Scholar 

  6. Kaore SN, Amane HS, Kaore NM (2013) Citrulline: pharmacological perspectives and its role as an emerging biomarker in future Fundam Clin Pharmacol 27:35–50

    Article  CAS  Google Scholar 

  7. György B, Tóth E, Tarcsa E, Falus A, Buzás EI (2006) Citrullination: a posttranslational modification in health and disease Int J Biochem Cell Biol 38:1662–1677

    Article  Google Scholar 

  8. Chirivi RGS, van Rosmalen JWG, Jenniskens GJ, Pruijn GJ, Raats JMH (2013) Citrullination: a target for disease intervention in multiple sclerosis and other inflammatory diseases? J Clin Cell Immunol 4:146

    Article  Google Scholar 

  9. Valesini G, Gerardi MC, Iannuccelli C, Pacucci VA, Pendolino M, Shoenfeld Y (2015) Citrullination and automimmunity Autoimmun Rev 14:490–497

    Article  CAS  Google Scholar 

  10. Wang R, Xin M, Li Y, Zhang P, Zhang M (2016) The functions of histone modification enzymes in cancer Curr Protein Pept Sci 17:438–445

    Article  CAS  Google Scholar 

  11. Tarazona-Díaz MP, Alacid F, Carrasco M, Martínez I, Aguayo E (2013) Watermelon juice: potential functional drink for sore muscle relief in athletes J Agric Food Chem 61(31):7522–7528

    Article  Google Scholar 

  12. Suzuki T, Morita M, Kobayashi Y, Kamimura A (2016) Oral L-citrulline supplementation enhances cycling time trial performance in healthy trained men: double-blind randomized placebo-controlled 2-way crossover study J Intern Soc Sports Nutr 13:6

    Article  Google Scholar 

  13. Toffoli P, Khodadad P, Rodier N (1987) Structure de l’acide L-amino-2 ureido-5 pentanoique (L-citrulline) Acta Cryst C43:945–947

    CAS  Google Scholar 

  14. Allouchi H, Nicolaï B, Barrio M, Céolin R, Mahé N, Tamarit J-L, Do B, Rietveld IB (2014) On the polymorphism of l-citrulline: crystal structure and characterization of the orthorhombic δ form Cryst Growth Des 14:1279–1286

    Article  CAS  Google Scholar 

  15. Sheldrick GM (2008) A short history of SHELX Acta Cryst A64:112–122

    Article  Google Scholar 

  16. Biovia, Inc. 10188 Telesis Court, Suite 100, San Diego, CA 92121, USA

  17. Delley B (2000) From molecules to solids with the DMol3 approach J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  18. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation Phys Rev B Condens Matter Mater Phys 46:6671–6687

    Article  CAS  Google Scholar 

  19. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  21. Li S, Jiang L, Qiu J, Wang P (2016) Solubility and solution thermodynamics of the δ form of l-citrulline in water + ethanol binary solvent mixtures J Chem Eng Data 61:264–271

    Article  CAS  Google Scholar 

  22. Toffoli P, Rodier N, Astoin J (1986) Structure cristalline de l’acide l-amino-2-ureido-5-pentanoïque dihydrate (l-citrulline dihydrate) Bull Soc Chim Fr 1:116–123

    Google Scholar 

  23. Yu JG, Ishine T, Kimura T, O’Brien WE, Lee TJ (1997) L-Citrulline conversion to L-arginine in sphenopalatine ganglia and cerebral perivascular nerves in the pig Am J Physiol 273(5 Pt 2):H2192–H2199

    CAS  Google Scholar 

  24. Wang S, Wang Y (2013) Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis Biochim Biophys Acta 1829:1126–1135

    Article  CAS  Google Scholar 

  25. Harrison CB, Schulten K (2012) Quantum and classical dynamics simulations of ATP hydrolysis in solution J Chem Theory Comput 10:2328–2335

    Article  Google Scholar 

  26. Akola J, Jones RO (2003) ATP hydrolysis in water—a density functional study J Phys Chem B 107:11774–11783

    Article  CAS  Google Scholar 

  27. Yang Y, Cui Q (2009) The hydrolysis activity of adenosine triphosphate in myosin: a theoretical analysis of anomeric effects and the nature of the transition state J Phys Chem A 113:12439–12446

    Article  CAS  Google Scholar 

  28. Wang P, Oscarson JL, Izatt RM, Watt GD, Larsen CD (1995) Thermodynamic parameters for the interaction of adenosine 5′-diphosphate, and adenosine 5′-triphosphate with Mg2+ from 323.15 to 398.15 K J Solut Chem 24:989–1012

    Article  CAS  Google Scholar 

  29. Trujillo C, Previtali V, Rozas I (2016) A theoretical model of the interaction between phosphates in the ATP molecule and guanidinium systems Theor Chem Accounts 135:260

    Article  Google Scholar 

  30. Bicker KL, Thompson PR (2013) The protein arginine deiminases (pads): structure, function, inhibition, and disease Biopolymers 99(2):155–163

    Article  CAS  Google Scholar 

  31. Lehmann MS, Verbist JJ, Hamilton WC, Koetzle TF (1973) Precision neutron diffraction structure determination of protein and nucleic acid components. Part V. Crystal and molecular structure of the amino-acid L-arginine dehydrate J Chem Soc Perkin Trans 2:133–137

    Article  Google Scholar 

Download references

Acknowledgements

X-ray facilities were provided by the US National Science Foundation (Grant No. 0521237). We are indebted to Professor Lou Massa for transmitting his vast knowledge of quantum chemistry with enthusiasm and wit and congratulate him on his Festschrift.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Rossi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This paper is dedicated to Professor Lou Massa on the occasion of his Festschrift: A Path through Quantum Crystallography.

Electronic supplementary material

ESM 1

(DOCX 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caruso, A., Rossi, M., Gahn, C. et al. A structural and computational study of citrulline in biochemical reactions. Struct Chem 28, 1581–1589 (2017). https://doi.org/10.1007/s11224-017-0996-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0996-x

Keywords

Navigation