Skip to main content

Effect of dispersion corrections on covalent and non-covalent interactions in DFTB calculations

Abstract

Dispersion corrections in quantum mechanical methods with the focus on non-covalent interactions have been extensively investigated in the past decade. In this paper, we elucidate the role of dispersion corrections in both non-covalent and covalent interactions within the density functional tight binding (DFTB) method. Our results suggest that two dispersion correction models, D3(BJ) and D3(CSO), generally improve different properties including barrier heights, isomerization energies, bond dissociation energies, and non-covalent binding energies. The D3(CSO) model, with fewer dispersion coefficients and DFTB-dependent parameters, was shown to perform as well as the D3(BJ) model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61:689–746

    CAS  Article  Google Scholar 

  2. Cohen AJ, Mori-Sánchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112 (1):289–320

    CAS  Article  Google Scholar 

  3. Grimme S (2011) Density functional theory with London dispersion corrections. Wiley Interdiscip Rev: Comput Mol Sci 1(2):211–228

    CAS  Google Scholar 

  4. Pribram-Jones A, Gross DA, Burke K (2015) DFT: a theory full of holes?. Annu Rev Phys Chem 66(1):283–304

    CAS  Article  Google Scholar 

  5. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15)

  6. Andersson Y, Langreth DC, Lundqvist BI (1996) Van der Waals interactions in density-functional theory. Phys Rev Lett 76:102–105

    CAS  Article  Google Scholar 

  7. Langreth DC, Dion M, Rydberg H, Schröder E, Hyldgaard P, Lundqvist BI (2005) Van der Waals density functional theory with applications. Int J Quantum Chem 101(5):599–610

    CAS  Article  Google Scholar 

  8. Sato T, Tsuneda T, Hirao K (2005) Van der Waals interactions studied by density functional theory. Mol Phys 103(6-8):1151–1164

    CAS  Article  Google Scholar 

  9. von Lilienfeld OA, Tavernelli I, Rothlisberger U, Sebastiani D (2004) Optimization of effective atom centered potentials for London dispersion forces in density functional theory. Phys Rev Lett 93:153004

    Article  Google Scholar 

  10. Sun YY, Kim Y-H, Lee K, Zhang SB (2008) Accurate and efficient calculation of van der Waals interactions within density functional theory by local atomic potential approach. J Chem Phys 129(15)

  11. Torres E, DiLabio GA (2012) A (nearly) universally applicable method for modeling noncovalent interactions using B3LYP. J Phys Chem Lett 3(13):1738–1744

    CAS  Article  Google Scholar 

  12. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1):215–241

    CAS  Article  Google Scholar 

  13. Brandenburg JG, Hochheim M, Bredow T, Grimme S (2014) Low-cost quantum chemical methods for noncovalent interactions. J Phys Chem Lett 5(24):4275–4284

    CAS  Article  Google Scholar 

  14. Burns LA, Vázquez-Mayagoitia Á, Sumpter BG, Sherrill CD (2011) Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment XDM theory, and specialized functionals. J Chem Phys 134(8):084107

    Article  Google Scholar 

  15. Grimme S, Hansen A, Brandenburg JG, Bannwarth C (2016) Dispersion-corrected mean-field electronic structure methods. Chem Rev 116(9):5105–5154

    CAS  Article  Google Scholar 

  16. Korth M, Thiel W (2011) Benchmarking semiempirical methods for thermochemistry, kinetics, and noncovalent interactions: OMx methods are almost as accurate and robust as DFT-GGA methods for organic molecules. J Chem Theory Comput 7(9):2929– 2936

    CAS  Article  Google Scholar 

  17. DiLabio GA, Koleini M (2014) Dispersion-correcting potentials can significantly improve the bond dissociation enthalpies and noncovalent binding energies predicted by density-functional theory. J Chem Phys 140(18):18A542

    Article  Google Scholar 

  18. van Santen JA, DiLabio GA (2015) Dispersion corrections improve the accuracy of both noncovalent and covalent interactions energies predicted by a density-functional theory approximation. J Phys Chem A 119 (25):6703–6713

    Article  Google Scholar 

  19. Řezáč J, Hobza P (2012) Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J Chem Theory Comput 8(1):141–151

    Article  Google Scholar 

  20. Brandenburg JG, Grimme S (2014) Accurate modeling of organic molecular crystals by dispersion-corrected density functional tight binding (DFTB). J Phys Chem Lett 5(11):1785–1789

    CAS  Article  Google Scholar 

  21. Goerigk L, Grimme S (2011) Efficient and accurate double-hybrid-meta-GGA density functionals—evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J Chem Theory Comput 7(2):291–309

    CAS  Article  Google Scholar 

  22. Schröder H, Creon A, Schwabe T (2015) Reformulation of the D3(Becke–Johnson) dispersion correction without resorting to higher than C6 dispersion coefficients. J Chem Theory Comput 11(7):3163–3170

    Article  Google Scholar 

  23. Aradi B, Hourahine B, Frauenheim T (2007) DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111(26):5678–5684

    CAS  Article  Google Scholar 

  24. DFTD3 code. http://www.thch.uni-bonn.de/tc/index.php?section=downloads&subsection=DFT-D3

  25. Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13:6670–6688

    CAS  Article  Google Scholar 

  26. Köster A, Geudtner G, Alvarez-Ibarra A, Calaminici P, Casida M, Carmona-Espindola J, Dominguez V, Flores-Moreno R, Gamboa G, Goursot A, Heine T, Ipatov A, de la Lande A, Janetzko F, del Campo J-M, Mejia-Rodriguez D, Reveles J, J V-P J, Vela A, Zuniga-Gutierrez B, D Salahub (2016) deMon2k, version 5. Cinvestav, Mexico City

  27. Tukey JW (1977) Exploratory data analysis. Addison-Wesley Publishing Company

  28. Wickham H, Stryjewski L (2012) 40 years of boxplots, tech. rep., had.co.nz

  29. Zhao Y, Lynch BJ, Truhlar DG (2004) Development and assessment of a new hybrid density functional model for thermochemical kinetics. J Phys Chem A 108(14):2715–2719

    CAS  Article  Google Scholar 

  30. Zhao Y, González-García N, Truhlar DG (2005) Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods. J Phys Chem A 109(9):2012–2018

    CAS  Article  Google Scholar 

  31. Goerigk L, Grimme S (2010) A general database for main group thermochemistry, kinetics, and noncovalent interactions—assessment of common and reparameterized (meta-)GGA density functionals. J Chem Theory Comput 6(1):107–126

    CAS  Article  Google Scholar 

  32. Yu L-J, Sarrami F, O’Reilly RJ, Karton A (2015) Reaction barrier heights for cycloreversion of heterocyclic rings: an Achilles’ heel for DFT and standard ab initio procedures. Chem Phys 458:1–8

    CAS  Article  Google Scholar 

  33. Johnson ER, Mori-Sánchez P, Cohen AJ, Yang W (2008) Delocalization errors in density functionals and implications for main-group thermochemistry. J Chem Phys 129(20):204112

    Article  Google Scholar 

  34. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106(3):1063–1079

    CAS  Article  Google Scholar 

  35. Zhao Y, Tishchenko O, Gour JR, Li W, Lutz JJ, Piecuch P, Truhlar DG (2009) Thermochemical kinetics for multireference systems: addition reactions of ozone. J Phys Chem A 113(19):5786–5799

    CAS  Article  Google Scholar 

  36. Gruzman D, Karton A, Martin JML (2009) Performance of ab initio and density functional methods for conformational equilibria of Cn H2n+2 alkane isomers (n = 4–8). J Phys Chem A 113(43):11974–11983

    CAS  Article  Google Scholar 

  37. Manna D, Martin JML (2016) What are the ground state structures of C20 and C24? An explicitly correlated ab initio approach. J Phys Chem A 120(1):153–160

    CAS  Article  Google Scholar 

  38. Karton A, Gruzman D, Martin JML (2009) Benchmark thermochemistry of the Cn H2n+2 alkane isomers (n = 2–8) and performance of DFT and composite ab initio methods for dispersion-driven isomeric equilibria. J Phys Chem A 113(29):8434–8447

    CAS  Article  Google Scholar 

  39. Wilke JJ, Lind MC, Schaefer HF, Császár A G, Allen WD (2009) Conformers of gaseous cysteine. J Chem Theory Comput 5(6):1511–1523

    CAS  Article  Google Scholar 

  40. Grimme S, Steinmetz M, Korth M (2007) How to compute isomerization energies of organic molecules with quantum chemical methods. J Org Chem 72(6):2118–2126

    CAS  Article  Google Scholar 

  41. Huenerbein R, Schirmer B, Moellmann J, Grimme S (2010) Effects of London dispersion on the isomerization reactions of large organic molecules: a density functional benchmark study. Phys Chem Chem Phys 12:6940–6948

    CAS  Article  Google Scholar 

  42. Fogueri UR, Kozuch S, Karton A, Martin JM (2013) The melatonin conformer space: benchmark and assessment of wave function and DFT methods for a paradigmatic biological and pharmacological molecule. J Phys Chem A 117(10):2269– 2277

    CAS  Article  Google Scholar 

  43. Řeha D, Valdés H, Vondrášek J, Hobza P, Abu-Riziq A, Crews B, de Vries MS (2005) Structure and IR spectrum of phenylalanyl–glycyl–glycine tripetide in the gas-phase: IR/UV experiments, ab initio quantum chemical calculations, and molecular dynamic simulations. Chem – Eur J 11(23):6803–6817

    Article  Google Scholar 

  44. Csonka GI, French AD, Johnson GP, Stortz CA (2009) Evaluation of density functionals and basis sets for carbohydrates. J Chem Theory Comput 5(4):679–692

    CAS  Article  Google Scholar 

  45. Kesharwani MK, Karton A, Martin JML (2016) Benchmark ab initio conformational energies for the proteinogenic amino acids through explicitly correlated methods. assessment of density functional methods. J Chem Theory Comput 12(1):444–454

    CAS  Article  Google Scholar 

  46. Karton A, Daon S, Martin JM (2011) W4-11: a high-confidence benchmark dataset for computational thermochemistry derived from first-principles {W4} data. Chem Phys Lett 510(4–6):165–178

    CAS  Article  Google Scholar 

  47. Krieg H, Grimme S (2010) Thermochemical benchmarking of hydrocarbon bond separation reaction energies: Jacob’s ladder is not reversed! Mol Phys 108(19-20):2655–2666

    CAS  Article  Google Scholar 

  48. Řezáč J, Hobza P (2013) Describing noncovalent interactions beyond the common approximations: how accurate is the “gold standard,” CCSD(T) at the complete basis set limit? J Chem Theory Comput 9(5):2151–2155

    Article  Google Scholar 

  49. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104

    Article  Google Scholar 

  50. Sedlak R, Janowski T, Pitoňák M, Řezáč J, Pulay P, Hobza P (2013) Accuracy of quantum chemical methods for large noncovalent complexes. J Chem Theory Comput 9(8):3364–3374

    CAS  Article  Google Scholar 

  51. Jurecka P, Sponer J, Cerny J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, dna base pairs, and amino acid pairs. Phys Chem Chem Phys 8:1985–1993

    CAS  Article  Google Scholar 

  52. Řezáč J, Riley KE, Hobza P (2011) S66: a well-balanced database of benchmark interaction energies relevant to biomolecular structures. J Chem Theory Comput 7(8):2427–2438

    Article  Google Scholar 

  53. Bryantsev VS, Diallo MS, van Duin ACT, Goddard WA (2009) Evaluation of B3LYP, X3LYP, and M06-class density functionals for predicting the binding energies of neutral, protonated, and deprotonated water clusters. J Chem Theory Comput 5(4):1016–1026

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Special thanks to Professor Tobias Schwabe for sharing the D3(CSO) code and for helpful comments. Chehelamirani would like to thank Dr. Maurício C. da Silva and Said Jalife Jacobo for helpful discussions. The authors would also like to acknowledge financial support from the Centre for Molecular Simulation (CMS) at the University of Calgary. D. R. S. is grateful to NSERC for ongoing Discovery Grant support. Simulations were performed using the computing resources provided by WestGrid and Compute/Calcul Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Chehelamirani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This paper is dedicated to Professor Lou Massa on the occasion of his Festschrift: A Path through Quantum Crystallography

Electronic supplementary material

Below is the link to the electronic supplementary material.

(ZIP 6.93 MB)

(PDF 149 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chehelamirani, M., Salahub, D.R. Effect of dispersion corrections on covalent and non-covalent interactions in DFTB calculations. Struct Chem 28, 1399–1407 (2017). https://doi.org/10.1007/s11224-017-0976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0976-1

Keywords

  • Dispersion
  • DFTB
  • Covalent
  • Non-covalent
  • D3(BJ)
  • D3(CSO)