Structural Chemistry

, Volume 28, Issue 6, pp 1631–1644 | Cite as

Molecular recognition of cyclodecapeptides to ibuprofen and naproxen enantiomers: a theoretical study

  • Xue Li
  • Yanyan Zhu
  • Chunmei Liu
  • Xincheng Lin
  • Wenjing Zhang
  • Mingsheng Tang
Original Research
  • 192 Downloads

Abstract

Cyclopeptide derivatives have attracted great interest in host-guest chemistry during the past decades. In this work, four cyclopeptides including one cyclodecapeptide (CDP) and three modified CDPs (M-CDP involves I-CDP, E-CDP, and H-CDP) are adopted as hosts to differentiate the four guests of the amphetamine (AP) and ibuprofen (IP) enantiomers using a proposed integrated computation protocol. The obtained results demonstrated that the guests of AP and IP enantiomers could be recognized by different cyclopeptides using the certain optimized quantum chemistry methods. Specifically, the AP or IP enantiomers might be identified by the corresponding cyclopepitdes in the five pairs of the inclusion complexes associated with the large differences of binding energies of hosts with guests, that is, the two of H-CDP/AP and H-CDP/IP by B3LYP, the two of I-CDP/IP and H-CDP/IP by CAM-B3LYP, and the other one of I-CDP/IP by M06-2X, which are mainly determined by their corresponding stable conformations, electronic properties, and favorable interactions. The intermolecular hydrogen bonds and NBO analyses of the inclusion complexes further suggest the corresponding differences of binding energies. The visual nonbonded weak interactions for the studied systems gave the reasons why the AP and IP enantiomers are identified by the corresponding cyclopeptides. Molecular dynamics simulated results further support the above conclusions. The investigation provides detailed information at a molecular level about the recognition of the two chiral drug molecules by the four cyclodecapeptides. The integrated computation protocol proposed in this work provides people a feasible way to study interaction of hosts and guests, molecular recognition, and chiral separation.

Keywords

Molecular recognition Cyclodecapeptide Ibuprofen Naproxen Host-guest Inclusion 

Supplementary material

11224_2017_929_MOESM1_ESM.docx (598 kb)
Figure S1Electrostatic potential maps for the host molecules of CDP, I-CDP, E-CDP and H-CDP calculated at the B3LYP/6–311++G(d,p) level of theory (red = less positive potential, blue = more positive potential). (DOCX 597 kb)

References

  1. 1.
    Yu G, Jie K, Huang F (2015) Supramolecular Amphiphiles based on host-guest molecular recognition motifs. Chem Rev 115:7240–7303CrossRefGoogle Scholar
  2. 2.
    Gubitz G, Schmid MG (2001) Chiral separation by chromatographic and electromigration techniques. A review. Biopharm Drug Dispos 22:291–336CrossRefGoogle Scholar
  3. 3.
    Amly W, Karaman R (2016) Recent updates in utilizing prodrugs in drug delivery (2013–2015). Expert Opinion on Drug Delivery 13:571–591CrossRefGoogle Scholar
  4. 4.
    Chen H, Ogo S, Fish RH (1996) Bioorganometallic chemistry. 8. The molecular recognition of aromatic and aliphatic amino acids and substituted aromatic and aliphatic carboxylic acid guests with Supramolecular (η5-Pentamethylcyclopentadienyl)rhodium−Nucleobase, nucleoside, and nucleotide cyclic Trimer hosts via non-covalent π−π and hydrophobic interactions in water: steric, electronic, and conformational parameters. J Am Chem Soc 118:4993–5001CrossRefGoogle Scholar
  5. 5.
    Connors KA (1997) The stability of cyclodextrin complexes in solution. Chem Rev 97:1325–1358CrossRefGoogle Scholar
  6. 6.
    Gavin JA, Garcia ME, Benesi AJ, Mallouk TE (1998) Chiral molecular recognition in a tripeptide benzylviologen cyclophane host. J Org Chem 63:7663–7669CrossRefGoogle Scholar
  7. 7.
    Aki H, Niiya T, Iwase Y, Kawasaki Y, Kumai K, Kimura T (2004) Multimodal inclusion complexes of ampicillin with β-cyclodextrins in aqueous solution. Thermochim Acta 416:87–92CrossRefGoogle Scholar
  8. 8.
    Bikádi Z, Iványi R, Szente L, Ilisz I (2007) Hazai E. Cyclodextrin complexes: Chiral recognition and complexation behaviour Curr Drug Discov Technol 4:282–294Google Scholar
  9. 9.
    Cai W, Sun T, Liu P, Chipot C, Shao X (2009) Inclusion mechanism of steroid drugs into β-cyclodextrins. Insights from Free Energy Calculations J Phys Chem B 113:7836–7843Google Scholar
  10. 10.
    Cai W, Yao X, Shao X, Pan Z (2005) Bimodal complexations of steroids with cyclodextrins by a flexible docking algorithm. J Incl Phenom Macrocycl Chem 51:41–51CrossRefGoogle Scholar
  11. 11.
    Cai W, Yu Y, Shao X (2005) Chiral recognitio of aromatic compounds by β-cyclodextrin based on bimodal complexation. J Mol Model 11:186–193CrossRefGoogle Scholar
  12. 12.
    Geng Q-X, Wang F, Cong H, Tao Z, Wei G (2016) Recognition of silver cations by a cucurbit [8] uril-induced supramolecular crown ether. Org Biomol Chem 14:2556–2562CrossRefGoogle Scholar
  13. 13.
    Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) The cucurbit[n]uril family. Angew Chem Int Ed 44:4844–4870CrossRefGoogle Scholar
  14. 14.
    Nicolas H, Yuan B, Zhang X, Schönhoff M (2016) Cucurbit[8]uril-containing multilayer films for the Photocontrolled binding and release of a guest molecule. Langmuir 32:2410–2418CrossRefGoogle Scholar
  15. 15.
    Talapaneni SN, Kim D, Barin G, Buyukcakir O, Je SH, Coskun A (2016) Pillar[5]arene based conjugated Microporous polymers for propane/methane separation through host-guest Complexation. Chem Mater 28:4460–4466CrossRefGoogle Scholar
  16. 16.
    Yu G, Wu D, Li Y, Zhang Z, Shao L, Zhou J, Hu Q, Tangb G, Huang F (2016) A pillar[5]arene-based [2]rotaxane lights up mitochondria. Chem Sci 7:3017–3024CrossRefGoogle Scholar
  17. 17.
    Lee M, Gibson HW (2016) Rotaxane-type hyperbranched polymers from a crown ether host and paraquat guests containing blocking groups. J Polym Sci Pol Chem 54:1647–1658CrossRefGoogle Scholar
  18. 18.
    Abraham W (2002) Inclusion of organic Cations by calix[n]arenes. J Incl Phenom Macrocycl Chem 43:159–174CrossRefGoogle Scholar
  19. 19.
    Yu G, Zhou J, Shen J, Tang G, Huang F (2016) Cationic pillar [6] arene/ATP host–guest recognition: selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment. Chem Sci 7:4073–4078CrossRefGoogle Scholar
  20. 20.
    Ogoshi T, T-a Y, Nakamoto Y (2016) Pillar-shaped Macrocyclic hosts pillar[n]arenes: new key players for Supramolecular chemistry. Chem Rev 116:7937–8002CrossRefGoogle Scholar
  21. 21.
    McHugh SM, Rogers JR, Yu H, Lin Y-S (2016) Insights into how cyclic peptides switch conformations. J Chem Theory Comput 12:2480–2488CrossRefGoogle Scholar
  22. 22.
    Arena G, Bonomo RP, Impellizzeri G, Izatt RM, Lamb JD, Rizzarelli E (1987) Coordination properties of cyclopeptides. Formation, stability, and structure of proton and copper(II) complexes of cyclo-(L-histidyl-L-histidyl) in aqueous solution. Inorg Chem 26:795–800CrossRefGoogle Scholar
  23. 23.
    Bitta J (2001) Complexation of arginine with a cyclopeptide in polar solvents and water. J Supramol Chem 1:293–297CrossRefGoogle Scholar
  24. 24.
    Guisado-Barrios G, Muñoz BK, Kamer PCJ, Lastdrager B, van der Marel G, Overhand M, Vega-Vázquez M, Martin-Pastor M (2013) Cyclic decapeptide gramicidin S derivatives containing phosphines: novel ligands for asymmetric catalysis. Dalton Trans 42:1973–1978CrossRefGoogle Scholar
  25. 25.
    Gulavita NK, Gunasekela SP, Pomponi SA, Robinson EV (1992) Polydiscamide a: a new bioactive depsipeptide from the marine sponge discodermia sp. J Org Chem 57:1767–1772CrossRefGoogle Scholar
  26. 26.
    Ishida H, Donowaki K, Suga M, Shimose K, Ohkubo K (1995) Serine proteinases mimics: hydrolytic activity of cyclic peptides which include a non-natural amino acid. Tetrahedron Lett 36:8987–8990CrossRefGoogle Scholar
  27. 27.
    Ishida H, Suga M, Donowaki K, Ohkubo K (1995) Highly effective binding of phosphomonoester with neutral cyclic peptides which include a non-natural amino acid. J Org Chem 60:5374–5375CrossRefGoogle Scholar
  28. 28.
    Kubik S, Goddard R (1999) A new cyclic pseudopeptide composed of (L)-proline and 3-aminobenzoic acid subunits as a ditopic receptor for the simultaneous complexation of cations and anions. J Org Chem 64:9475–9486CrossRefGoogle Scholar
  29. 29.
    Kessler H, Matter H, Gemmecker G, Kottenhahn M, Bats JW (1992) Structure and dynamics of a synthetic O-gycosylated cyclopeptide in solution determined by NMR spectroscopy and MD calculations. J Am Chem Soc 114:4805–4818CrossRefGoogle Scholar
  30. 30.
    Kessler H (1982) Conformation and biological activity of cyclic peptides. Angew Chem Int Ed Engl 21:512–523CrossRefGoogle Scholar
  31. 31.
    Kobayashi J, Tsuda M, Nakamura T, Mikami Y, Shigemori H (1993) Hymenamides a and b, new proline-rich cyclic heptapeptides from the okinawan marine sponge hymeniacidon sp. Tetrahedron 49:2391–2402CrossRefGoogle Scholar
  32. 32.
    Krause MR, Goddard R, Kubik S (2011) Anion-binding properties of a cyclic pseudohexapeptide containing 1,5-disubstituted 1,2,3-triazole subunits. J Org Chem 76:7084–7095CrossRefGoogle Scholar
  33. 33.
    Kubik S, Bitta J, Goddard R, Kubik D, Pohl S (2001) Receptor properties of cyclic peptides composed of alternating natural amino acids and 3-aminobenzoic acid derivatives. Mater Sci Eng C 18:125–133CrossRefGoogle Scholar
  34. 34.
    Clark TD, Buehler LK, Ghadiri MR (1998) Self-assembling cyclic β3-peptide nanotubes as artificial transmembrane ion channels. J Am Chem Soc 120:651–656CrossRefGoogle Scholar
  35. 35.
    Hudecova J, Kapitán J, Baumruk V, Hammer RP, Keiderling TA, Bour P (2010) Side chain and flexibility contributions to the raman optical activity spectra of a model cyclic hexapeptide. J Phys Chem A 114:7642–7651CrossRefGoogle Scholar
  36. 36.
    Chung BKW, White CJ, Scully CCG, Yudin AK (2016) The reactivity and conformational control of cyclic tetrapeptides derived from aziridine-containing amino acids. Chem Sci 7:6662–6668CrossRefGoogle Scholar
  37. 37.
    Armata N, Dyke JM, Ferrante F, Manna GL (2008) Computational study on cesium azide trapped in a cyclopeptidic tubular structure. J Chem Theory Comput 4:542–548CrossRefGoogle Scholar
  38. 38.
    Chen G, Su S, Liu R (2002) Theoretical studies of monomer and dimer of cyclo [(−l-Phe 1-d-Ala 2-) n] and cyclo [(−l-Phe1-d-me N-Ala2-) n](n= 3-6). J Phys Chem B 106:1570–1575CrossRefGoogle Scholar
  39. 39.
    Duca D, Bifulco G, Barone G, Casapullo A, Fontana A (2004) SCSA code: applications on the cyclopeptide renieramide. J Chem Inf Comput Sci 44:1024–1030CrossRefGoogle Scholar
  40. 40.
    Ferrante F, Manna GL (2007) Theoretical study of the interaction between sodium ion and a cyclopeptidic tubular structure. J Comput Chem 28:2085–2090CrossRefGoogle Scholar
  41. 41.
    Garíca-Fandiño R, Castedo L, Granja JR, Vázquez SA (2010) Interaction and dimerization energies in methyl-blocked r,γ-peptide nanotube segments. J Phys Chem B 114:4973–4983CrossRefGoogle Scholar
  42. 42.
    García-Fandiño R, Granja JR, D’Abramo M, Orozco M (2009) Theoretical characterization of the dynamical behavior and transport properties of α,γ-peptide nanotubes in solution. J Am Chem Soc 131:15678–15686CrossRefGoogle Scholar
  43. 43.
    Jishi RA, Flores RM, Valderrama M, Lou L, Bragin J (1998) Equilibrium geometry and properties of cyclo[(Gly-D-Ala)4] and {cyclo[(Gly-D-Ala)4]}2 from density functional theory. J Phys Chem A 102:9858–9862CrossRefGoogle Scholar
  44. 44.
    Kim H, Jeong K, Lee S, Jung S (2002) Molecular dynamics simulation of cyclosophoroheptadecaose (Cys-a). J Comput Aided Mol Des 16:601–610CrossRefGoogle Scholar
  45. 45.
    Lewis JP, Pawley NH, Sankey OF (1997) Theoretical investigation of the cyclic peptide system cyclo[(d-Ala-Glu-d-Ala-Gln)m=1-4]. J Phys Chem B 101:10576–10583CrossRefGoogle Scholar
  46. 46.
    Takeuchi J, Takeda K (2016) Theoretical study on application of peptide nanoring to chiral recognition of amino acid. Japanese J Applied Phys. doi:10.7567/JJAP.55.03DF09/pdf Google Scholar
  47. 47.
    Poteau R, Trinquier G (2005) All-cis cyclic peptides. J Am Chem Soc 127:13875–13889CrossRefGoogle Scholar
  48. 48.
    Okamoto H, Nakanishi T, Nagai Y, Kasahara M, Takeda K (2003) Variety of the molecular conformation in peptide nanorings and nanotubes. J Am Chem Soc 125:2756–2769CrossRefGoogle Scholar
  49. 49.
    Shahangi F, Chermahini AN, Dabbagh HA, Teimouri A, Farrokhpour H (2013) Enantiomeric separation of d-and l-lactic acid enantiomers by use of nanotubular cyclicpeptides: a DFT study. Comput Theor Chem 1020:163–169CrossRefGoogle Scholar
  50. 50.
    Zhu Y, Zhao H, Liu C, Wei D, Li X, Li S, Tang M (2014) DFT studies on inclusion complexes of 1-phenyl-1-propanol enantiomers with modified cyclic decapeptides. Struct Chem 25:699–705CrossRefGoogle Scholar
  51. 51.
    Zhao H, Zhu Y, Tong M, He J, Liu C, Tang M (2012) Density functional theory studies on the inclusion complexes of cyclic decapeptide with 1-phenyl-1-propanol enantiomers. J Mol Model 18:851–858CrossRefGoogle Scholar
  52. 52.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  53. 53.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785CrossRefGoogle Scholar
  54. 54.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  55. 55.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120:215–241CrossRefGoogle Scholar
  56. 56.
    Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Account Chem Res 41:157–167CrossRefGoogle Scholar
  57. 57.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi MC, Rega JMM, Klene M, Knox JE, Cross JB, Bakken CA, Jaramillo, Gomperts R, Stratmann OY, Austin R, Cammi CP, Ochterski RLM, Morokuma VGZ, Voth GA, P Salvador JJD, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. (2010) Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford.Google Scholar
  58. 58.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662CrossRefGoogle Scholar
  59. 59.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461Google Scholar
  60. 60.
    J T, B M, E C (1999) THEOCHEM J Mol Struct 464:211–226CrossRefGoogle Scholar
  61. 61.
    Georgieva P, Himo F (2008) Density functional theory study of the reaction mechanism of the DNA repairing enzyme alkylguanine alkyltransferase. Chem Phys Lett 463:214–218CrossRefGoogle Scholar
  62. 62.
    Ahmed L, Rhaman MM, Mendy JS, Wang J, Fronczek FR, Powell DR, Leszczynski J, Hossain MA (2015) Experimental and theoretical studies on halide binding with a p-xylyl-based azamacrocycle. J Phys Chem A 119:383–394CrossRefGoogle Scholar
  63. 63.
    Turi L, Dannenberg JJ (1993) Correcting for basis set superposition error in aggregates containing more than two molecules: ambiguities in the calculation of the counterpoise correction. J Phys Chem 97:2488–2490CrossRefGoogle Scholar
  64. 64.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465CrossRefGoogle Scholar
  65. 65.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  66. 66.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  67. 67.
    Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham TE, Darden TA, Duke RE, Gohlke H, et al (2014) AMBER 14. University of California, San FranciscoGoogle Scholar
  68. 68.
    Lee MC, Duan Y (2004) Distinguish protein decoys by using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model. Proteins 55:620–634CrossRefGoogle Scholar
  69. 69.
    Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 55:1157–1174CrossRefGoogle Scholar
  70. 70.
    Zhu Y, Tong M, Liu C, Song C, Wei D, Zhao Q, Tang M (2014) Molecular dynamics simulations on inclusion complexes for chiral enantiomers with heterocyclic cyclodecapeptide. Comput Theor Chem 1027:46–52CrossRefGoogle Scholar
  71. 71.
    Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620CrossRefGoogle Scholar
  72. 72.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  73. 73.
    Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Xue Li
    • 1
  • Yanyan Zhu
    • 1
  • Chunmei Liu
    • 1
  • Xincheng Lin
    • 1
  • Wenjing Zhang
    • 1
  • Mingsheng Tang
    • 1
  1. 1.College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations