Structural Chemistry

, Volume 28, Issue 4, pp 1065–1079 | Cite as

Interplay between non-covalent pnicogen bonds and halogen bonds interactions in ArH2N---PH2FO---BrF nanostructured complexes: a substituent effects investigation

Original Research


The interplay between pnicogen bonds and halogen bonds in nanostructured 4-XPhNH2---PH2FO---BrF (X = H, Me, NH2, N(Me)2, OH, OMe, F, Cl, Br, CHO, CN and NO2) complexes have been investigated using M06-2X/aug-cc-pVDZ quantum chemical calculations. The attraction energy of P---N and O---Br in the nanostructured 4-XPhH2N---PH2FO and PH2FO---BrF dimer systems increased because of the introduction of a third molecule and hence a positive cooperativity is observed during formation of the pnicogen bond and halogen bond in trimer complexes. The effect of substituent exchange on cooperativity between pnicogen bonds and halogen bonds was studied and the results cleared that the cooperativity between pnicogen and halogen bonds increases with an increase in the electron donor capability of substituents. In addition, the obtained values for cooperativity, showed a good correlation with Hammett’s substituent constants. Both the pnicogen and halogen bonds distances in the trimer complexes are dependent on the power of the P---N and O---Br bonds respectively and are shortened compared to the corresponding dimer complex systems. The shortening of both the pnicogen and halogen bond distances in the trimer complexes increases as the electron withdrawing nature of the substituent increases. Natural bond orbital theory is used to investigate how charge redistribution during molecular interactions, leads to the positive cooperative effects. Good correlations between amounts of charge transfer and pnicogen/halogen bond distance variations are obtained. Finally, molecular electrostatic potential and electron density difference maps were used for to increase the depth of understanding. The positive interplay between pnicogen and halogen bonds within the studied complexes is consistent with the results of both the molecular electrostatic potential and electron density difference maps.


Cooperative effect Substituent effect Pnicogen bond Halogen bond Molecular electrostatic potential NBO analysis Electron density difference analysis 

Supplementary material

11224_2017_911_MOESM1_ESM.docx (128 kb)
ESM 1(DOCX 127 kb)


  1. 1.
    Chalasinski G, Szczesniak MM (2000) State of the art and challenges of the ab initio theory of intermolecular interactions. Chem Rev 100:4227–4252CrossRefGoogle Scholar
  2. 2.
    Saalfrank RW, Maid H, Scheurer A (2008) Supramolecular coordination chemistry: the synergistic effect of serendipity and rational design. Angew Chem Int Ed 47:8794–8824CrossRefGoogle Scholar
  3. 3.
    Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New YorkGoogle Scholar
  4. 4.
    Behzadi H, Esrafili MD, Hadipour NL (2007) A theoretical study of 17O, 14N and 2H nuclear quadrupole coupling tensors in the real crystalline structure of acetaminophen. Chem Phys 333:97–104Google Scholar
  5. 5.
    Esrafili MD, Behzadi H, Beheshtian J, Hadipour NL (2008) Theoretical 14N nuclear quadrupole resonance parameters for sulfa drugs: sulfamerazine and sulfathiazole. J Mol Graph Model 27:326–331Google Scholar
  6. 6.
    Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci U S A 101:16789–16794CrossRefGoogle Scholar
  7. 7.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296CrossRefGoogle Scholar
  8. 8.
    Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) Blue shifts vs red shifts in σ-hole bonding. J Mol Model 14:699–704CrossRefGoogle Scholar
  9. 9.
    Esrafili MD, Solimannejad M (2013) Revealing substitution effects on the strength and nature of halogen-hydride interactions: a theoretical study. J Mol Model 19:3767–3777CrossRefGoogle Scholar
  10. 10.
    Bertani R, Chaux F, Gleria M, Metrangolo P, Milani R, Pilati T, Resnati G, Sansotera M, Venzo A (2007) Supramolecular rods via halogen bonding-based self-assembly of fluorinated phosphazene nanopillars. Inorg Chim Acta 360:1191–1199CrossRefGoogle Scholar
  11. 11.
    Cariati E, Forni A, Biella S, Metrangolo P, Meyer F, Resnati G, Righetto S, Tordin E, Ugo R (2007) Tuning second-order NLO responses through halogen bonding. Chem Commun:2590–2592Google Scholar
  12. 12.
    Metrangolo P, Resnati G (2007) Halogen bonding: fundamentals and applications, structure and bonding. Springer, BerlinGoogle Scholar
  13. 13.
    Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Halogen bonding versus hydrogen bonding in driving self-assembly processes perfluorocarbon-hydrocarbon self-assembly, part IX. Angew Chem Int Ed 39:1782–1786CrossRefGoogle Scholar
  14. 14.
    Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Halogen bonding in supramolecular chemistry. Angew Chem Int Ed 47:6114–6127CrossRefGoogle Scholar
  15. 15.
    Loc Nguyen H, Horton PN, Hursthouse MB, Legon AC, Bruce DW (2004) Halogen Bonding: A New Interaction for Liquid Crystal Formation. J Am Chem Soc 126:16–17CrossRefGoogle Scholar
  16. 16.
    Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12:7736–7747CrossRefGoogle Scholar
  17. 17.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395CrossRefGoogle Scholar
  18. 18.
    Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Halogen bonding in halocarbon–protein complexes: a structural survey. Chem Soc Rev 40:2267–2278CrossRefGoogle Scholar
  19. 19.
    Lu YX, Shi T, Wang Y, Yang HY, Yan XH, Luo XM, Jiang HL, Zhu WL (2009) Halogen bonding-a novel interaction for rational drug design? J Med Chem 52:2854–2862CrossRefGoogle Scholar
  20. 20.
    Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J, Plancher JM, Hartmann G, Banner DW, Haap W, Diederich F (2011) Systematic investigation of halogen bonding in protein-ligand interactions. Angew Chem Int Ed 50:314–318CrossRefGoogle Scholar
  21. 21.
    Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional non-covalent interaction. Phys Chem Chem Phys 12:7748–7757CrossRefGoogle Scholar
  22. 22.
    Politzer P, Murray JS (2013) Enthalpy and entropy factors in gas phase halogen bonding: compensation and competition. Cryst Eng Commun 15:3145–3150CrossRefGoogle Scholar
  23. 23.
    Metrangolo P, Resnati G (2001) Halogen bonding: a paradigm in supramolecular chemistry. Chem Eur J 7:2511–2519CrossRefGoogle Scholar
  24. 24.
    Fox DB, Liantonio R, Metrangolo P, Pilati T, Resnati G (2004) Perfluorocarbon-hydrocarbons self-assembly: halogen bonding mediated intermolecular recognition. J Fluor Chem 125:271–281CrossRefGoogle Scholar
  25. 25.
    Aakerçy CB, Fasulo M, Schultheiss N, Desper J, Moore C (2007) Structural competition between hydrogen bonds and halogen bonds. J Am Chem Soc 129:13772–13773CrossRefGoogle Scholar
  26. 26.
    Metrangolo P, Resnati G, Pilati T, Liantonio R, Meyer F (2006) Engineering functional materials by halogen bonding. J Polym Sci Part A 45:1–15CrossRefGoogle Scholar
  27. 27.
    Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The Halogen Bond. Chem Rev 116(4):2478–2601CrossRefGoogle Scholar
  28. 28.
    Li Q, Lin Q, Li W, Cheng J, Gong B, Sun J (2008) Cooperativity between the halogen bond and the hydrogen bond in H3N---XY---HF complexes (X, Y = F, Cl, Br). ChemPhysChem 9:2265–2269CrossRefGoogle Scholar
  29. 29.
    Murray JS, Clark T, Lane P, Politzer P (2007) σ-hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038CrossRefGoogle Scholar
  30. 30.
    Wang WZ, Ji BM, Zhang Y (2009) Chalcogen bond: a sister non-covalent bond to halogen bond. J Phys Chem A 113:8132–8135CrossRefGoogle Scholar
  31. 31.
    Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Pnicogen bonds: a new molecular linker? Chem Eur J 17:6034–6038CrossRefGoogle Scholar
  32. 32.
    Scheiner S (2011) A new non-covalent force: comparison of P---N interaction with hydrogen and halogen bonds. J Chem Phys 134:094315CrossRefGoogle Scholar
  33. 33.
    Bauza A, Ramis R, Frontera A (2014) Computational study of anion recognition based on tetrel and hydrogen bonding interaction by calix[4]pyrrole derivatives. Comput Theor Chem 1038:67–70CrossRefGoogle Scholar
  34. 34.
    Solimannejad M, Gharabaghi M, Scheiner S (2011) SH---N and SH---P blue-shifting H-bonds and N---P interactions in complexes pairing HSN with amines and phosphines. J Chem Phys 134:024312CrossRefGoogle Scholar
  35. 35.
    Bauza A, Mooibroek TJ, Frontera A (2015) The bright future of unconventional σ/π-hole interactions. ChemPhysChem 16:2496–2517CrossRefGoogle Scholar
  36. 36.
    Scheiner S (2013) The pnicogen bond: its relation to hydrogen, halogen, and other non-covalent bonds. Acc Chem Res 46:280–288CrossRefGoogle Scholar
  37. 37.
    Scheiner S (2011) Effects of substituents upon the P---N non-covalent interaction: the limits of its strength. J Phys Chem A 115:11202–11209CrossRefGoogle Scholar
  38. 38.
    Adhikari U, Scheiner S (2012) Sensitivity of pnicogen, chalcogen, halogen and H-bonds to angular distortions. Chem Phys Lett 532:31–35CrossRefGoogle Scholar
  39. 39.
    Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in non-covalent interactions. J Mol Model 21:52CrossRefGoogle Scholar
  40. 40.
    Politzer P, Murray JS, Lane P (2007) σ-hole bonding and hydrogen bonding: Competitive interactions. Int J Quantum Chem 107:3046–3052CrossRefGoogle Scholar
  41. 41.
    Alkorta I, Elguero J, Del Bene JE (2013) Pnicogen-bonded cyclic trimers (PH2X)3 with X = F, Cl, OH, NC, CN, CH3, H, and BH2. J Phys Chem A 117:4981–4987Google Scholar
  42. 42.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2011) Structures, energies, bonding, and NMR properties of pnicogen complexes H2XP:NXH2 (X = H, CH3, NH2, OH, F, Cl). J Phys Chem A 115:13724–13731CrossRefGoogle Scholar
  43. 43.
    Vickaryous WJ, Healy ER, Berryman OB, Johnson DW (2005) Synthesis and characterization of two isomeric, self-assembled arsenic-thiolate macrocycles. Inorg Chem 44:9247–9252CrossRefGoogle Scholar
  44. 44.
    Saparov B, He H, Zhang X, Greene R, Bobev S (2010) Synthesis, crystallographic and theoretical studies of the new Zintl phases Ba2Cd2Pn3 (Pn = As, Sb), and the solid solutions (Ba1-xSrx)2Cd2Sb3 and Ba2Cd2(Sb1-xAsx)3. Dalton Trans 39:1063–1070Google Scholar
  45. 45.
    Murray JS, Lane P, Politzer P (2007) A predicted new type of directional non-covalent interaction. Int J Quantum Chem 107:2286–2292Google Scholar
  46. 46.
    Scheiner S (2013) Detailed Comparison of the Pnicogen Bond with Chalcogen, Halogen, and Hydrogen Bonds. Int J Quantum Chem 113:1609–1620CrossRefGoogle Scholar
  47. 47.
    Politzer P, Murray J (2012) Halogen bonding and beyond: factors influencing the nature of CN-R and SiN-R complexes with F-Cl and Cl2. Theor Chem Accounts 131:1114CrossRefGoogle Scholar
  48. 48.
    Kilian P, Slawin AM, Woollins JD (2003) Naphthalene-1,8-diyl bis(halogenophosphanes): novel syntheses and structures of useful synthetic building blocks. Chem Eur J 9:215–222CrossRefGoogle Scholar
  49. 49.
    Scheiner S (2011) Weak H-bonds. Comparisons of CH---O to NH---O in proteins and PH---N to direct P---N interactions. Phys Chem Chem Phys 13:13860–13872CrossRefGoogle Scholar
  50. 50.
    Del Bene JE, Alkorta I, Elguero J (2014) Pnicogen-Bonded Anionic Complexes. J Phys Chem A 118:3386–3392CrossRefGoogle Scholar
  51. 51.
    Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012) Pnicogen-hydride interaction between FH2X (X = P and As) and HM (M = ZnH, BeH, MgH, Li, and Na). J Phys Chem A 116:2547–2553CrossRefGoogle Scholar
  52. 52.
    Zhuo HY, Li QZ (2015) Novel pnicogen bonding interactions with silylene as an electron donor: covalency, unusual substituent effects and new mechanisms. Phys Chem Chem Phys 17:9153–9160CrossRefGoogle Scholar
  53. 53.
    Del Bene JE, Alkorta I, Elguero J (2013) Characterizing complexes with pnicogen bonds involving sp2 hybridized phosphorus atoms: (H2C═PX)2 with X = F, Cl, OH, CN, NC, CCH, H, CH3, and BH2. J Phys Chem A 117:6893–6903CrossRefGoogle Scholar
  54. 54.
    Solimannejad M, Ghafari S, Esrafili MD (2013) Theoretical insight into cooperativity in lithium-bonded complexes: linear clusters of LiCN and LiNC. Chem Phys Lett 577:6–10CrossRefGoogle Scholar
  55. 55.
    Zhao Q, Feng D, Hao J (2011) The cooperativity between hydrogen and halogen bond in the XY---HNC---XY (X, Y = F, Cl, Br) complexes. J Mol Model 17:2817–2823CrossRefGoogle Scholar
  56. 56.
    Esrafili MD, Hadipour NL (2011) Characteristics and nature of halogen bonds in linear clusters of NCX (X = Cl, and Br): an ab initio, NBO and QTAIM study. Mol Phys 109:2451–2460CrossRefGoogle Scholar
  57. 57.
    Esrafili MD, Shahabivand S (2014) A theoretical evidence for cooperativity effects in fluorine-centered halogen bonds: linear (FCN)2–7 and (FNC)2–7 clusters. Struct Chem 25:403–408CrossRefGoogle Scholar
  58. 58.
    George J, Deringer VL, Dronskowski R (2014) Cooperativity of halogen, chalcogen, and pnicogen bonds in finite molecular chains by electronic structure theory. J Phys Chem A 118:3193–3200CrossRefGoogle Scholar
  59. 59.
    Vijay D, Sastry GN (2010) The cooperativity of cation–π and π–π interactions. Chem Phys Lett 485:235–242CrossRefGoogle Scholar
  60. 60.
    Alkorta I, Blanco F, Elguero J, Estarellas C, Frontera A, Quinonero D, Deya PM (2009) Simultaneous interaction of tetrafluoroethene with anions and hydrogen-bond donors: a cooperativity study. J Chem Theory Comput 5:1186–1194CrossRefGoogle Scholar
  61. 61.
    Frontera A, Quinonero D, Costa A, Ballester P, Deya PM (2007) MP2 study of cooperative effects between cation–π, anion–π and π–π interactions. New J Chem 31:556–560CrossRefGoogle Scholar
  62. 62.
    Lankau T, Wu YC, Zou JW, Yu CH (2008) The cooperativity between hydrogen and halogen bonds. J Theor Comput Chem 7:13–35CrossRefGoogle Scholar
  63. 63.
    Li QZ, Zhuo HY, Yang X, Chen JB, Li WZ, Loffredo RE (2014) Cooperative and diminutive effects of pnicogen bonds and cation–π interactions. ChemPhysChem 15:500–506CrossRefGoogle Scholar
  64. 64.
    Lu YX, Liu YT, Li HY, Zhu X, Liu HL, Zhu WL (2012) Energetic effects between halogen bonds and anion-π or lone pair-π interactions: a theoretical study. J Phys Chem A 116:2591–2597CrossRefGoogle Scholar
  65. 65.
    Esrafili MD, Mohammadian-Sabet F, Solimannejad M (2015) Mutual influence between anion-π and pnicogen bond interactions: the enhancement of P---N and P---O interactions by an anion-π bond. J Mol Graph Model 57:99–105CrossRefGoogle Scholar
  66. 66.
    Zhao Q (2014) Interplay between halogen and chalcogen bonding in the XCl---OCS---NH3 (X = F, OH, NC, CN, and FCC) complex. J Mol Model 20:2458–2464Google Scholar
  67. 67.
    Li QZ, Li R, Liu XF, Li WZ, Chen JB (2012) Concerted Interaction between Pnicogen and Halogen Bonds in XCl---FH2P---NH3 (X = F, OH, CN, NC, and FCC). ChemPhysChem 13:1205–1212Google Scholar
  68. 68.
    Esrafili MD, Fatehi P, Solimannejad M (2013) Mutual interplay between pnicogen bond and dihydrogen bond in HMH---HCN---PH2X complexes (M = Be, Mg, Zn; X = H, F, Cl). Comput Theor Chem 1034:1–6Google Scholar
  69. 69.
    Esrafili MD, Ghanbari M, Mohammadian-Sabet F (2014) Substituent effects on cooperativity of pnicogen bonds. J Mol Model 20:2436CrossRefGoogle Scholar
  70. 70.
    Esraili MD, Mohammadian-Sabet F, Esmailpour P, Solimannejad M (2013) Cooperativity between fluorine-centered halogen bonds: investigation of substituent effects. J Mol Model 19:5625CrossRefGoogle Scholar
  71. 71.
    Zhao Q (2016) Cooperative effects between pnicogen bonds and halogen bonds in XBr---OFH2P---NH3 (X = F, Cl, CN, NC, OH, and NO2) complexes. J Mol Model 22:5CrossRefGoogle Scholar
  72. 72.
    Murray JS, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15:723–729CrossRefGoogle Scholar
  73. 73.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, non-covalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241CrossRefGoogle Scholar
  74. 74.
    Hohenstein EG, Chill ST, Sherrill CD (2008) Assessment of the Performance of the M05-2X and M06-2X Exchange-Correlation Functionals for Non-covalent Interactions in Biomolecules. J Chem Theory Comput 4:1996–2000CrossRefGoogle Scholar
  75. 75.
    Kozuch S, Martin JML (2013) Halogen Bonds: Benchmarks and Theoretical Analysis. J Chem Theory Comput 9:1918–1931CrossRefGoogle Scholar
  76. 76.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  77. 77.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  78. 78.
    Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  79. 79.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  80. 80.
    Rincon L, Almeida R (2012) Is the Hammett’s constants free of steric effects? J Phys Chem A 116(28):7523–7530CrossRefGoogle Scholar
  81. 81.
    Politzer P, Murray JS (2013) Halogen Bonding: An Interim Discussion. ChemPhysChem 14(2):278–294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesUniversity of GuilanRashtIran
  2. 2.Department of ChemistryPayame Noor UniversityTehranIran

Personalised recommendations