Structural Chemistry

, Volume 28, Issue 2, pp 527–535 | Cite as

Synthesis, conformation and cytotoxicity of new, branched polymeric polypeptides containing hydrophobic amino acid or arginine moiety

  • Mónika Sebestyén
  • Rita Szabó
  • László Kőhidai
  • Éva Pállinger
  • Gábor Mező
  • György Kóczán
  • Ferenc Hudecz
Original Research


In this paper we report on the synthesis and solution conformation of a new set of structurally related polycationic branched chain polypeptides (poly[Lys(X i -dl-Ala m )]) with hydrophobic (Ile, Nle, Val) or cationic (Arg) amino acids at the N-terminal end of the side chains as well as their cytotoxic effect on murine bone marrow derived macrophages. Solution conformation of the polypeptides was studied with circular dichroism spectroscopy under different conditions (pH, ionic strength). The results of these comparative studies indicate that a) polypeptides could adopt an ordered (mainly helical) conformation at physiological pH and salt concentration (pH 7.4, 0.2 M NaCl); b) the nature of side chain terminal amino acid (X) could determine under which conditions the ordered structure was formed. Thus, the solution conformation of branched polypeptides could be modulated by the selection of amino acid X under physiological conditions. All polypeptides with hydrophobic amino acid at the terminal position were essentially non-toxic on macrophages, whereas the polypeptide with terminal Arg proved to be markedly cytotoxic.


polylysine based polypeptides hydrophobic side chain solution conformation in vitro cytotoxicity 



This work was supported by a grant from the Hungarian National Research Fund (OTKA K104385). R. Szabó (PhD) was supported by the Postdoctoral Fellowship of Hungarian Academy of Sciences (HAS). The authors thank Dr. Zsuzsa Majer for the helpful discussion concerning the interpretation of CD spectra. The authors also thank Dr. Hedvig Medzihradszky-Schweiger for the amino acid analyses.


  1. 1.
    Kóczán G, Ghoose AC, Mookerjee A, Hudecz F (2002) Bioconjug Chem 13:518–524CrossRefGoogle Scholar
  2. 2.
    Pang X, Du HL, Zhang HQ, Zhai YJ, Zhai GX (2013) Drug Disc Today 18:1316–1322CrossRefGoogle Scholar
  3. 3.
    Duncan R, Vicent MJ (2013) Adv Drug Deliv Rev 65:60–70CrossRefGoogle Scholar
  4. 4.
    Maeda H, Nakamura H, Fang J (2013) Adv Drug Deliv Rev 65:71–79CrossRefGoogle Scholar
  5. 5.
    Hudecz F (1995) Anti-Cancer Drugs 6:171–193CrossRefGoogle Scholar
  6. 6.
    Böhme D, Krieghoff J, Beck-Sickinger AG (2016) Med Chem 59:3409–3417CrossRefGoogle Scholar
  7. 7.
    Hudecz F, Reményi J, Szabó R, Kóczán G, Mező G, Kovács P, Gaál D (2003) J Mol Recognit 16:288–298CrossRefGoogle Scholar
  8. 8.
    Szabó R, Bánóczi Z, Mező G, Láng O, Kőhidai L, Hudecz F (2010) Biochim Biophys Acta 1798:2209–2216CrossRefGoogle Scholar
  9. 9.
    Votavova H, Hudecz F, Kajtár J, Szekerke M, Sponar J, Blaha K (1980) Coll. Czech. Chem. Commun. 45:941–949CrossRefGoogle Scholar
  10. 10.
    Votavova H, Hudecz F, Sponar J, Szekerke M, Blaha K (1982) Coll. Czech. Chem. Commun. 47:3437–3446CrossRefGoogle Scholar
  11. 11.
    Mező G, Reményi J, Kajtár J, Barna K, Gaál D, Hudecz F (2000) J Control Release 63:81–95CrossRefGoogle Scholar
  12. 12.
    Hudecz F, Pimm MV, Rajnavölgyi É, Mező G, Fabra A, Gaál D, Kovács AL, Horváth A, Szekerke M (1999) Bioconjug Chem 10:781–790CrossRefGoogle Scholar
  13. 13.
    Szabó R, Mező G, Pállinger É, Kovács P, Kőhidai L, Bősze S, Hudecz F (2008) Bioconjug Chem 19:1078–1086CrossRefGoogle Scholar
  14. 14.
    Chen GC, Yang JT (1977) Anal Lett 10:1195–1207CrossRefGoogle Scholar
  15. 15.
    Szabó R, Peiser L, Plüddemann A, Bősze S, Heinsbroek S, Gordon S, Hudecz F (2005) Bioconjug Chem 16:1442–1450CrossRefGoogle Scholar
  16. 16.
    Katchalski E, Grossfeld I, Frankel M (1948) J Am Chem Soc 70(6):2094–2101CrossRefGoogle Scholar
  17. 17.
    Yaron A, Berger A (1963) Biochim Biophys Acta 69:397–399CrossRefGoogle Scholar
  18. 18.
    Bailey JL (1950) J. Chem. Soc.:3461–3466Google Scholar
  19. 19.
    Kricheldorf HR (1987) Springer-Verlag Berlin Heidelberg pp. 3–58Google Scholar
  20. 20.
    Chou PY, Fasman GD (1974) Biochemistry 13:211–222CrossRefGoogle Scholar
  21. 21.
    Hudecz F, Szekerke M (1980) Coll Czech Chem Commun 45:933–940CrossRefGoogle Scholar
  22. 22.
    Iwakura Y, Uno K, Kang S (1965) J Org Chem 30(4):1158–1161CrossRefGoogle Scholar
  23. 23.
    Astbury WT, Dalgliesh CE, Darmon E, GBBM S (1948) Nature 162:596–600CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mónika Sebestyén
    • 1
  • Rita Szabó
    • 1
  • László Kőhidai
    • 2
  • Éva Pállinger
    • 2
  • Gábor Mező
    • 1
  • György Kóczán
    • 1
  • Ferenc Hudecz
    • 1
    • 3
  1. 1.MTA-ELTE Research Group of Peptide ChemistryBudapestHungary
  2. 2.Department of Genetics, Cell- and ImmunobiologySemmelweis UniversityBudapestHungary
  3. 3.ELTE Department of Organic ChemistryBudapestHungary

Personalised recommendations