Friedel–Crafts acyl rearrangements in the fluoranthene series


Friedel–Crafts monoacylation and diacylation of fluoranthene (FT) gave 3-acetyl-, 8-acetyl-, 3-benzoyl-, 8-benzoyl-, 3-(4-fluorobenzoyl)-, 8-(4-fluorobenzoyl)-, 3,9-diacetyl-, 3,9-dibenzoyl-, and 3,9-bis(4-fluorobenzoyl)fluoranthene (3-AcFT, 8-AcFT, 3-BzFT, 8-BzFT, 3-(4-FBz)FT, 8-(4-FBz)FT, 3,9-Ac2FT, 3,9-Bz2FT, and 3,9-(4-FBz)2FT). The crystal and molecular structures of 8-AcFT, 3,9-Ac2FT, 7,10-Ac2FT, 3-BzFT, 8-BzFT, and 3-(4-FBz)FT were determined by X-ray crystallography. The structures of the fluoranthene derivatives, including 3,9-Ac2FT were verified by 1H-, 13C-, and 19F-NMR spectroscopy. The Friedel–Crafts acyl rearrangements in PPA of the above fluoranthene derivatives were studied at various temperatures and times. The kinetically controlled product 3-AcFT/3-BzFT rearranged to the thermodynamically-controlled product 8-AcFT/8-BzFT, not vice versa. 3,9-Ac2FT, 3,9-Bz2FT, and 3,9-(4-FBz)2FT underwent deacylation in PPA to give 8-AcFT, 8-BzFT, and 8-(4-FBz)FT, respectively. Deacetylation of 3,9-Ac2FT gave also 3-methyl-1H-benzo[cd]fluoranthene (3-MeBcdFT). The rich Friedel–Crafts acylation chemistry in PPA revealed in the fluoranthene series is characterized by regioselectivity. DFT calculations at B3LYP/6-31G(d) supported the regioselectivity including the formation of 3,9-Ac2FT, and the win of kinetic control over thermodynamic control.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Scheme 1.
Fig. 4
Scheme 2
Scheme 3


  1. 1.

    Wang Z (2009) Friedel–Crafts acylations. In: Comprehensive organic name reactions and reagents. Wiley-Interscience, New York. 1(248):1126–1130

  2. 2.

    Wang Z (2009) Friedel–Crafts alkylations. In: Comprehensive organic name reactions and reagents. Wiley-Interscience, New York. 1(249):1131–1136

  3. 3.

    Olah GA (1973) Friedel–Crafts chemistry. Wiley Intersceince, New York

    Google Scholar 

  4. 4.

    Norman ROC, Taylor R (1965) Electrophilic substitution in benzenoid compounds; Elsevier, London; chapter 6, p. 174

  5. 5.

    Buehler CA, Pearson DE (1970) Friedel–Crafts and related acylations. In: Survey of organic synthesis. Wiley Interscience, New York. (11):653

  6. 6.

    Pearson DE, Buehler CA (1971) Synthesis 1971:445–477

    Article  Google Scholar 

  7. 7.

    Gore PH (1974) Chem Ind 1974:727–731

    Google Scholar 

  8. 8.

    Gore PH (1955) Chem Rev 55:229–281

    CAS  Article  Google Scholar 

  9. 9.

    Gore PH (1964) Aromatic ketone synthesis. In: Olah GA (ed) Friedel–Crafts and related reactions. Wiley Interscience, New York. 3(31):1–381

  10. 10.

    Agranat I, Shih Y-S, Bentor Y (1974) J Am Chem Soc 96:1259

  11. 11.

    Agranat I, Shih Y-S (1974) Synth Commun 4:119–126

  12. 12.

    Heaney H (1991) The intramolecular aromatic Friedel–Crafts reaction. In: Trost BM, Flemins I, Heathcock CH (eds) Comprehensive organic synthesis. Pergamon Press, New York. 2 (3.3):753–768

  13. 13.

    Agranat I, Shih Y-S (1974) Synthesis 1974:865–867

  14. 14.

    Agranat I, Bentor Y, Shih Y-S (1977) J Am Chem Soc 99:7068–7070

  15. 15.

    Frangopol M, Genunche A, Frangopol PT, Balaban AT (1964) Tetrahedron 20:1881–1888

  16. 16.

    Nenitzescu CD, Balaban AT (1964) Aliphatic acylations. In: Olah GA (ed) Friedel–Crafts and related reactions. Wiley-Interscience, New York. 3(37):1033–1152

  17. 17.

    Balaban AT (1966) Omagiu Raluca Ripan. 1966:103–109. CAN67:63429. Chem Abstr 1967, 67, 63429a

  18. 18.

    Mala’bi T, Pogodin S, Agranat I (2011) Tetrahedron Lett 52:1854–1857

    Article  Google Scholar 

  19. 19.

    Mala’bi T, Pogodin S, Cohen S, Agranat I (2013) RSC Adv 3:21797–21810

    Article  Google Scholar 

  20. 20.

    Pogodin S, Cohen S, Mala’bi T, Agranat I (2011) Polycyclic aromatic ketones—a crystallographic and theoretical study of acetyl anthracenes. In: Chandrasekaran A (ed) Current trends in X-ray crystallography. InTech, New York; vol. 1, Chapter 1, pp. 3–42

  21. 21.

    Okamoto A, Yonezawa N (2015) J Synt Org Chem Japan 73:339–360

  22. 22.

    Harris RK, Becker ED, Cabral De Meezes SN, Granger P, Hoffman RE, Zilm KW (2008) Further conventions for NMR shielding and chemical shifts (IUPAC recommendations 2008). Pure Appl Chem 80:59–84

    CAS  Article  Google Scholar 

  23. 23.

    MiTeGen; LLC P.O. Box 3867 Ithaca, NY 14852

  24. 24.

    SMART-NT V5.6, BRUKER AXS GMBH, D-76181 (2002) Karlsruhe, Germany

  25. 25.

    SAINT-NT V5.0, BRUKER AXS GMBH, D-76181 (2002) Karlsruhe, Germany

  26. 26.

    SHELXTL-NT V6.1, BRUKER AXS GMBH, D-76181 (2002) Karlsruhe, Germany

  27. 27.

    Gaussian 09, Rev. D.01 (2013) Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr, JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc., Wallingford CT

  28. 28.

    Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Article  Google Scholar 

  29. 29.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    CAS  Article  Google Scholar 

  30. 30.

    Miertus S, Tomasi J (1982) Chem Phys 65:239–245

    CAS  Article  Google Scholar 

  31. 31.

    Campbell N, Leadill WK, Wilshire JFK (1951) J Chem Soc 1951:1404–1406

    Article  Google Scholar 

  32. 32.

    Campbell N, Easton WW (1949) J Chem Soc 1949:340–345

    Article  Google Scholar 

  33. 33.

    Compton RG, Northing RJ, Waller AM, Fleet GWJ, Son JC, Bashyal BP (1988) J Electroanal Chem Interfac 244:203–219

    CAS  Article  Google Scholar 

  34. 34.

    Albrecht WL, Fleming RW, Horgan SW, Kihm JC, Mayer GD (1974) J Med Chem 17:886–889

    CAS  Article  Google Scholar 

  35. 35.

    Gutman I (2010) Z Naturforsch 65a:473–476

    Google Scholar 

  36. 36.

    Dewar MJS, Dennington II RD (1989) J Am Chem Soc 111:3804–3808

  37. 37.

    Campbell N, Easton WW, Rayment JL, Wilshire JFK (1950) J Chem Soc 1950:2784–2787

    Article  Google Scholar 

  38. 38.

    Stoddart MW, Brownie JH, Baird MC, Schmider HL (2005) J Organomet Chem 690:3440–3450

    CAS  Article  Google Scholar 

  39. 39.

    Scott LT, Cheng PC, Hashemi MM, Bratcher MS, Meyer DT, Warren HB (1997) J Am Chem Soc 119:10963–10968

    CAS  Article  Google Scholar 

  40. 40.

    CCDC 1474883 (8-AcFT), 1474884 (8-BzFT), 1507272 (3-BzFT), 1474886 (3-(4-FBz)FT), 1474887 (3,9-Ac2FT) and 1474888 (7,10-Ac2FT) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK

  41. 41.

    Campbell N, Wilson NH (1970) Chem Ind 1970:1114–1115

    Google Scholar 

  42. 42.

    Zefirov YV (1997) Kristallografiya 42:122–128

    CAS  Google Scholar 

  43. 43.

    Nakasuji K, Nakamura T, Murata I (1978) Tetrahedron Lett 19:1539–1542

    Article  Google Scholar 

  44. 44.

    Liljenberg M, Brinck T, Herschend B, Rein T, Rockwell G, Svensson M (2010) J Org Chem 75:4696–4705

    CAS  Article  Google Scholar 

  45. 45.

    For the use of quantum chemistry mechanistic analysis of related electrophilic aromatic substitutions, see: Brinck T, Liljenberg M (2016) In: Mortier J (ed) Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. Wiley, New York. (4):83–105

  46. 46.

    Muller P (1994) Glossary of terms used in physical organic chemistry (IUPAC recommendations 1994). Pure Appl Chem 66:1077–1184

Download references

Author information



Corresponding author

Correspondence to Israel Agranat.

Additional information

This contribution is dedicated to Professor George A. Olah, the illustrious scientist, the Doyen of Friedel–Crafts chemistry, in celebration of his forthcoming 90th birthday.

Electronic supplementary material


(DOC 600 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mala’bi, T., Cohen, S., Pogodin, S. et al. Friedel–Crafts acyl rearrangements in the fluoranthene series. Struct Chem 28, 511–526 (2017).

Download citation


  • X-ray crystallography
  • NMR spectroscopy
  • Regioselectivity
  • Deacylation
  • Kinetic control
  • Thermodynamic control
  • PPA
  • DFT