Structural Chemistry

, Volume 28, Issue 2, pp 511–526 | Cite as

Friedel–Crafts acyl rearrangements in the fluoranthene series

  • Tahani Mala’bi
  • Shmuel Cohen
  • Sergey Pogodin
  • Israel AgranatEmail author
Original Research


Friedel–Crafts monoacylation and diacylation of fluoranthene (FT) gave 3-acetyl-, 8-acetyl-, 3-benzoyl-, 8-benzoyl-, 3-(4-fluorobenzoyl)-, 8-(4-fluorobenzoyl)-, 3,9-diacetyl-, 3,9-dibenzoyl-, and 3,9-bis(4-fluorobenzoyl)fluoranthene (3-AcFT, 8-AcFT, 3-BzFT, 8-BzFT, 3-(4-FBz)FT, 8-(4-FBz)FT, 3,9-Ac2FT, 3,9-Bz2FT, and 3,9-(4-FBz)2FT). The crystal and molecular structures of 8-AcFT, 3,9-Ac2FT, 7,10-Ac2FT, 3-BzFT, 8-BzFT, and 3-(4-FBz)FT were determined by X-ray crystallography. The structures of the fluoranthene derivatives, including 3,9-Ac2FT were verified by 1H-, 13C-, and 19F-NMR spectroscopy. The Friedel–Crafts acyl rearrangements in PPA of the above fluoranthene derivatives were studied at various temperatures and times. The kinetically controlled product 3-AcFT/3-BzFT rearranged to the thermodynamically-controlled product 8-AcFT/8-BzFT, not vice versa. 3,9-Ac2FT, 3,9-Bz2FT, and 3,9-(4-FBz)2FT underwent deacylation in PPA to give 8-AcFT, 8-BzFT, and 8-(4-FBz)FT, respectively. Deacetylation of 3,9-Ac2FT gave also 3-methyl-1H-benzo[cd]fluoranthene (3-MeBcdFT). The rich Friedel–Crafts acylation chemistry in PPA revealed in the fluoranthene series is characterized by regioselectivity. DFT calculations at B3LYP/6-31G(d) supported the regioselectivity including the formation of 3,9-Ac2FT, and the win of kinetic control over thermodynamic control.


X-ray crystallography NMR spectroscopy Regioselectivity Deacylation Kinetic control Thermodynamic control PPA DFT 

Supplementary material

11224_2016_894_MOESM1_ESM.doc (600 kb)
ESM 1 (DOC 600 kb)


  1. 1.
    Wang Z (2009) Friedel–Crafts acylations. In: Comprehensive organic name reactions and reagents. Wiley-Interscience, New York. 1(248):1126–1130Google Scholar
  2. 2.
    Wang Z (2009) Friedel–Crafts alkylations. In: Comprehensive organic name reactions and reagents. Wiley-Interscience, New York. 1(249):1131–1136Google Scholar
  3. 3.
    Olah GA (1973) Friedel–Crafts chemistry. Wiley Intersceince, New YorkGoogle Scholar
  4. 4.
    Norman ROC, Taylor R (1965) Electrophilic substitution in benzenoid compounds; Elsevier, London; chapter 6, p. 174Google Scholar
  5. 5.
    Buehler CA, Pearson DE (1970) Friedel–Crafts and related acylations. In: Survey of organic synthesis. Wiley Interscience, New York. (11):653Google Scholar
  6. 6.
    Pearson DE, Buehler CA (1971) Synthesis 1971:445–477CrossRefGoogle Scholar
  7. 7.
    Gore PH (1974) Chem Ind 1974:727–731Google Scholar
  8. 8.
    Gore PH (1955) Chem Rev 55:229–281CrossRefGoogle Scholar
  9. 9.
    Gore PH (1964) Aromatic ketone synthesis. In: Olah GA (ed) Friedel–Crafts and related reactions. Wiley Interscience, New York. 3(31):1–381Google Scholar
  10. 10.
    Agranat I, Shih Y-S, Bentor Y (1974) J Am Chem Soc 96:1259Google Scholar
  11. 11.
    Agranat I, Shih Y-S (1974) Synth Commun 4:119–126Google Scholar
  12. 12.
    Heaney H (1991) The intramolecular aromatic Friedel–Crafts reaction. In: Trost BM, Flemins I, Heathcock CH (eds) Comprehensive organic synthesis. Pergamon Press, New York. 2 (3.3):753–768Google Scholar
  13. 13.
    Agranat I, Shih Y-S (1974) Synthesis 1974:865–867Google Scholar
  14. 14.
    Agranat I, Bentor Y, Shih Y-S (1977) J Am Chem Soc 99:7068–7070Google Scholar
  15. 15.
    Frangopol M, Genunche A, Frangopol PT, Balaban AT (1964) Tetrahedron 20:1881–1888Google Scholar
  16. 16.
    Nenitzescu CD, Balaban AT (1964) Aliphatic acylations. In: Olah GA (ed) Friedel–Crafts and related reactions. Wiley-Interscience, New York. 3(37):1033–1152Google Scholar
  17. 17.
    Balaban AT (1966) Omagiu Raluca Ripan. 1966:103–109. CAN67:63429. Chem Abstr 1967, 67, 63429aGoogle Scholar
  18. 18.
    Mala’bi T, Pogodin S, Agranat I (2011) Tetrahedron Lett 52:1854–1857CrossRefGoogle Scholar
  19. 19.
    Mala’bi T, Pogodin S, Cohen S, Agranat I (2013) RSC Adv 3:21797–21810CrossRefGoogle Scholar
  20. 20.
    Pogodin S, Cohen S, Mala’bi T, Agranat I (2011) Polycyclic aromatic ketones—a crystallographic and theoretical study of acetyl anthracenes. In: Chandrasekaran A (ed) Current trends in X-ray crystallography. InTech, New York; vol. 1, Chapter 1, pp. 3–42Google Scholar
  21. 21.
    Okamoto A, Yonezawa N (2015) J Synt Org Chem Japan 73:339–360Google Scholar
  22. 22.
    Harris RK, Becker ED, Cabral De Meezes SN, Granger P, Hoffman RE, Zilm KW (2008) Further conventions for NMR shielding and chemical shifts (IUPAC recommendations 2008). Pure Appl Chem 80:59–84CrossRefGoogle Scholar
  23. 23.
    MiTeGen; LLC P.O. Box 3867 Ithaca, NY 14852Google Scholar
  24. 24.
    SMART-NT V5.6, BRUKER AXS GMBH, D-76181 (2002) Karlsruhe, GermanyGoogle Scholar
  25. 25.
    SAINT-NT V5.0, BRUKER AXS GMBH, D-76181 (2002) Karlsruhe, GermanyGoogle Scholar
  26. 26.
    SHELXTL-NT V6.1, BRUKER AXS GMBH, D-76181 (2002) Karlsruhe, GermanyGoogle Scholar
  27. 27.
    Gaussian 09, Rev. D.01 (2013) Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr, JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc., Wallingford CTGoogle Scholar
  28. 28.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  29. 29.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  30. 30.
    Miertus S, Tomasi J (1982) Chem Phys 65:239–245CrossRefGoogle Scholar
  31. 31.
    Campbell N, Leadill WK, Wilshire JFK (1951) J Chem Soc 1951:1404–1406CrossRefGoogle Scholar
  32. 32.
    Campbell N, Easton WW (1949) J Chem Soc 1949:340–345CrossRefGoogle Scholar
  33. 33.
    Compton RG, Northing RJ, Waller AM, Fleet GWJ, Son JC, Bashyal BP (1988) J Electroanal Chem Interfac 244:203–219CrossRefGoogle Scholar
  34. 34.
    Albrecht WL, Fleming RW, Horgan SW, Kihm JC, Mayer GD (1974) J Med Chem 17:886–889CrossRefGoogle Scholar
  35. 35.
    Gutman I (2010) Z Naturforsch 65a:473–476Google Scholar
  36. 36.
    Dewar MJS, Dennington II RD (1989) J Am Chem Soc 111:3804–3808Google Scholar
  37. 37.
    Campbell N, Easton WW, Rayment JL, Wilshire JFK (1950) J Chem Soc 1950:2784–2787CrossRefGoogle Scholar
  38. 38.
    Stoddart MW, Brownie JH, Baird MC, Schmider HL (2005) J Organomet Chem 690:3440–3450CrossRefGoogle Scholar
  39. 39.
    Scott LT, Cheng PC, Hashemi MM, Bratcher MS, Meyer DT, Warren HB (1997) J Am Chem Soc 119:10963–10968CrossRefGoogle Scholar
  40. 40.
    CCDC 1474883 (8-AcFT), 1474884 (8-BzFT), 1507272 (3-BzFT), 1474886 (3-(4-FBz)FT), 1474887 (3,9-Ac2FT) and 1474888 (7,10-Ac2FT) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK
  41. 41.
    Campbell N, Wilson NH (1970) Chem Ind 1970:1114–1115Google Scholar
  42. 42.
    Zefirov YV (1997) Kristallografiya 42:122–128Google Scholar
  43. 43.
    Nakasuji K, Nakamura T, Murata I (1978) Tetrahedron Lett 19:1539–1542CrossRefGoogle Scholar
  44. 44.
    Liljenberg M, Brinck T, Herschend B, Rein T, Rockwell G, Svensson M (2010) J Org Chem 75:4696–4705CrossRefGoogle Scholar
  45. 45.
    For the use of quantum chemistry mechanistic analysis of related electrophilic aromatic substitutions, see: Brinck T, Liljenberg M (2016) In: Mortier J (ed) Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. Wiley, New York. (4):83–105Google Scholar
  46. 46.
    Muller P (1994) Glossary of terms used in physical organic chemistry (IUPAC recommendations 1994). Pure Appl Chem 66:1077–1184Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Organic Chemistry, Institute of ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations