Structural Chemistry

, Volume 28, Issue 3, pp 823–831 | Cite as

Carbene tetrel-bonded complexes

  • Mingxiu Liu
  • Qingzhong Li
  • Wenzuo Li
  • Jianbo Cheng
Original Research


An ab initio calculation has been carried for the carbene tetrel bonded complexes CH3Y∙∙∙CH2 (Y = F, CN, NC, and NO2), CH3F∙∙∙CZ2 (Z = Cl and CH3), XH3F∙∙∙CF2 (X = C, Si, Ge, and Sn), SiF4∙∙∙CF2, and XH3F∙∙∙NHC (N-heterocyclic carbene), where carbene is treated as a Lewis base and XH3Y is a Lewis acid. Formation of the tetrel bond is mainly attributed to charge transfer from the lone pair on the C atom in the carbene toward the σ* X–Y orbital and also the σ* X–H one in the strong tetrel bond. The carbene tetrel bond is strengthened/weakened by the electron-withdrawing group in the tetrel donor/acceptor and enhanced by the methyl group in C(CH3)2. NHC forms a stronger carbene tetrel bond in XH3F∙∙∙NHC (X = Si, Ge, and Sn) where it exceeds that of the majority of H-bonds. Interestingly, the tetrel bond becomes stronger in the order of X = C < Ge < Sn < Si in XH3F∙∙∙NHC and the largest interaction energy occurs in SiH3F∙∙∙NHC, amounting to −103 kJ/mol. The carbene tetrel bond can be strengthened by cooperative effect with the N∙∙∙M interaction in trimers H2C∙∙∙CH3CN∙∙∙M (M = CH3CN, HCN, ICN, SbH2F, LiCN, and BeH2) and has doubled in H2C∙∙∙CH3CN∙∙∙BeH2.


Carbene Tetrel bonds Electrostatic interaction Cooperativity 



This work was supported by the National Natural Science Foundation of China (21573188) and the Graduate Innovation Foundation of Yantai University (YDZD1608).

Supplementary material

11224_2016_890_MOESM1_ESM.doc (5 mb)
ESM 1 (DOC 5149 kb)


  1. 1.
    Doyle MP, Duffy R, Ratnikov M, Zhou L (2010) Catalytic carbene insertion into C−H bonds. Chem Rev 110:704–724CrossRefGoogle Scholar
  2. 2.
    Wanzlick HW (1962) Aspects of nucleophilic carbene chemistry. Angew Chem Int Ed 1:75–80CrossRefGoogle Scholar
  3. 3.
    Arduengo AJ, Harlow RL, Kline M (1991) A stable crystalline carbene. J Am Chem Soc 113:361–363CrossRefGoogle Scholar
  4. 4.
    Herrmann WA (2002) N-heterocyclic carbenes: A new concept in organometallic catalysis. Angew Chem Int Ed Engl 41:1290–1309CrossRefGoogle Scholar
  5. 5.
    Meiries S, Le Duc G, Chartoire A, Collado A, Speck K, Arachchige KSA, Slawin AMZ, Nolan SP (2013) Large yet flexible N-heterocyclic carbene ligands for palladium catalysis. Chem Eur J 19:17358–17368CrossRefGoogle Scholar
  6. 6.
    Yu DY, Zhang YG (2010) Copper- and copper-N-heterocyclic carbene-catalyzed C-H activating carboxylation of terminal alkynes with CO2 at ambient conditions. Proc Natl Acad Sci U S A 107:20184–20189CrossRefGoogle Scholar
  7. 7.
    Alkorta I, Elguero J (1996) Carbenes and silylenes as hydrogen bond acceptors. J Phys Chem 100:19367–19370CrossRefGoogle Scholar
  8. 8.
    Li QZ, Wang YL, Liu ZB, Li WZ, Cheng JB, Gong BA, Sun JZ (2009) An unconventional halogen bond with carbene as an electron donor: An ab initio study. Chem Phys Lett 469:48–51CrossRefGoogle Scholar
  9. 9.
    Esrafili MD, Mohammadirad N (2013) Insights into the strength and nature of carbene···halogen bond interactions: A theoretical perspective. J Mol Model 19:2559–2566CrossRefGoogle Scholar
  10. 10.
    Li QZ, Wang HZ, Liu ZB, Li WZ, Cheng JB, Gong BA, Sun JZ (2009) Ab initio study of lithium-bonded complexes with carbene as an electron donor. J Phys Chem A 113:14156–14160CrossRefGoogle Scholar
  11. 11.
    Li ZF, Yang S, Li HX (2010) Theoretical prediction characters of unconventional weak bond with carbene as electron donors and Li–Y (Y = OH, H, F, NC and CN) as electron acceptors. THEOCHEM J Mol Struct 952:56–60CrossRefGoogle Scholar
  12. 12.
    Zhao Q, Feng DC, Sun YM, Hao JC, Cai ZT (2011) Theoretical investigations on the weak nonbonded C = S···CH2 interactions: Chalcogen-bonded complexes with singlet carbene as an electron donor. Int J Quant Chem 111:3881–3887CrossRefGoogle Scholar
  13. 13.
    Pinter B, Nagels N, Herrebout WA, De Proft F (2013) Halogen bonding from a hard and soft acids and bases perspective: Investigation by using density functional theory reactivity indices. Chem Eur J 19:519–530CrossRefGoogle Scholar
  14. 14.
    Zhuo HY, Li QZ (2015) Novel pnicogen bonding interactions with silylene as an electron donor: Covalency, unusual substituent effects and new mechanisms. Phys Chem Chem Phys 17:9153–9160CrossRefGoogle Scholar
  15. 15.
    Sessions RB, Gibbs N, Dempsey CE (1998) Hydrogen bonding in helical polypeptides from molecular dynamics simulations and amide hydrogen exchange analysis: Alamethicin and melittin in methanol. Biophys J 74:138–152CrossRefGoogle Scholar
  16. 16.
    Shi FQ, Li X, Xia Y, Zhang L, Yu ZX (2007) DFT study of the mechanisms of in water Au(I)-catalyzed tandem [3,3]-rearrangement/nazarov reaction/[1,2]-hydrogen shift of enynyl acetates: A proton-transport catalysis strategy in the water-catalyzed [1,2]-hydrogen shift. J Am Chem Soc 129:15503–15512CrossRefGoogle Scholar
  17. 17.
    Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) The halogen bond in the design of functional supramolecular materials: Recent advances. Acc Chem Res 46:2686–2695CrossRefGoogle Scholar
  18. 18.
    Shen QJ, Jin WJ (2011) Strong halogen bonding of 1,2-diiodoperfluoroethane and 1,6-diiodoperfluorohexane with halide anions revealed by UV-Vis, FT-IR, NMR spectroscopes and crystallography. Phys Chem Chem Phys 13:13721–13729CrossRefGoogle Scholar
  19. 19.
    Politzer P, Murray JS (2013) Halogen bonding: An interim discussion. Chem Phys Chem 14:278–294CrossRefGoogle Scholar
  20. 20.
    Alikhani E, Fuster F, Madebene B, Grabowski SJ (2014) Topological reaction sites–very strong chalcogen bonds. Phys Chem Chem Phys 16:2430–2442CrossRefGoogle Scholar
  21. 21.
    Scheiner S (2013) The pnicogen bond: Its relation to hydrogen, halogen, and other noncovalent bonds. Acc Chem Res 46:280–288CrossRefGoogle Scholar
  22. 22.
    Bauzá A, Mooibroek TJ, Frontera A (2013) Tetrel-bonding interaction: Rediscovered supramolecular force? Angew Chem Int Ed 5:12317–12321CrossRefGoogle Scholar
  23. 23.
    Murray JS, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15:723–729CrossRefGoogle Scholar
  24. 24.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: The σ-hole. J Mol Model 13:291–296CrossRefGoogle Scholar
  25. 25.
    Sarwar MG, Dragisic B, Sagoo S, Taylor MS (2010) A Tridentate halogen-bonding receptor for tight binding of halide anions. Angew Chem Int Ed 49:1674–1677CrossRefGoogle Scholar
  26. 26.
    Caballero A, White NG, Beer PD (2011) A bidentate halogen-bonding bromoimidazoliophane receptor for bromide ion recognition in aqueous media. Angew Chem Int Ed 50:1845–1848CrossRefGoogle Scholar
  27. 27.
    Das S, Incarvito CD, Crabtree RH, Brudvig GW (2006) Molecular recognition in the selective oxygenation of saturated CH bonds by a dimanganese catalyst. Science 312:1941–1943CrossRefGoogle Scholar
  28. 28.
    Aakeröy CB, Champness NR, Janiak C (2010) Recent advances in crystal engineering. CrystEngComm 12:22–43CrossRefGoogle Scholar
  29. 29.
    Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Halogen bonding in supramolecular chemistry. Angew Chem Int Ed 47:6114–6127CrossRefGoogle Scholar
  30. 30.
    Metrangolo P, Resnati G, Pilati T, Biella S (2008) Halogen bonding in crystal engineering. Struct Bond 126:105–136Google Scholar
  31. 31.
    Parker AJ, Stewart J, Donald KJ, Parish CA (2012) Halogen bonding in DNA base pairs. J Am Chem Soc 134:5165–5172CrossRefGoogle Scholar
  32. 32.
    Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci U S A 101:16789–16794CrossRefGoogle Scholar
  33. 33.
    Voth AR, Hays FA, Ho PS (2007) Directing macromolecular conformation through halogen bonds. Proc Natl Acad Sci U S A 104:6188–6193CrossRefGoogle Scholar
  34. 34.
    Mitzel NW, Blake AJ, Rankin DWH (1997) β-donor bonds in SiON units: An inherent structure-determining property leading to (4 + 4)-coordination in tetrakis-(N, N-dimethylhydroxylamido) silane. J Am Chem Soc 119:4143–4148CrossRefGoogle Scholar
  35. 35.
    Mitzel NW, Losehand U (1998) β-donor interactions of exceptional strength in N, N-dimethylhydroxylaminochlorosilane, ClH2SiONMe2. J Am Chem Soc 120:7320–7327CrossRefGoogle Scholar
  36. 36.
    Mitzel NW, Vojinovic K, Frohlich R, Foerster T, Robertson HE, Borisenko KB, Rankin DWH (2005) Three-membered ring or open chain molecule-(F3C)F2SiONMe2 a model for the α-effect in silicon chemistry. J Am Chem Soc 127:13705–13713CrossRefGoogle Scholar
  37. 37.
    Schmatz S, Ebker C, Labahn T, Stoll H, Klingebiel U (2003) Structure and rearrangement reactions of bis (organosilyl)(organostannyl) hydroxylamines: A joint theoretical/experimental study. Organomet 22:490–498CrossRefGoogle Scholar
  38. 38.
    Yin B, Huang YH, Wang G, Wang Y (2010) Combined DFT and NBO study on the electronic basis of Si···N-β-donor bond. J Mol Model 16:437–446CrossRefGoogle Scholar
  39. 39.
    Murray JS, Concha MC, Politzer P (2011) Molecular surface electrostatic potentials as guides to Si-ON angle contraction: Tunable σ-holes. J Mol Model 17:2151–2157CrossRefGoogle Scholar
  40. 40.
    Bundhun A, Ramasami P, Murray JS, Politzer P (2013) Trends in σ-hole strengths and interactions of F3MX molecules (M = C, Si, Ge and X = F, Cl, Br, I). J Mol Model 19:2739–2746CrossRefGoogle Scholar
  41. 41.
    Murray JS, Macaveiu L, Politzer P (2014) Factors affecting the strengths of σ-hole electrostatic potentials. J Comput Sci 5:590–596CrossRefGoogle Scholar
  42. 42.
    Mani D, Arunan E (2013) The X–C⋯Y (X = O/F, Y = O/S/F/Cl/Br/N/P) 'carbon bond' and hydrophobic interactions. Phys Chem Chem Phys 15:14377–14383CrossRefGoogle Scholar
  43. 43.
    Grabowski SJ (2014) Tetrel bond–σ-hole bond as a preliminary stage of the SN 2 reaction. Phys Chem Chem Phys 16:1824–1834CrossRefGoogle Scholar
  44. 44.
    Li QZ, Guo X, Yang X, Li WZ, Cheng JB, Li HB (2014) A σ-hole interaction with radical species as electron donors: Does single-electron tetrel bonding exist? Phys Chem Chem Phys 16:11617–11625CrossRefGoogle Scholar
  45. 45.
    Li QZ, Zhuo HY, Li HB, Liu ZB, Li WZ, Cheng JB (2014) Tetrel–hydride interaction between XH3F (X = C, Si, Ge, Sn) and HM (M = Li, Na, BeH, MgH). J Phys Chem A 119:2217–2224CrossRefGoogle Scholar
  46. 46.
    Guo X, Liu YW, Li QZ, Li WZ, Cheng JB (2015) Competition and cooperativity between tetrel bond and chalcogen bond in complexes involving F2CX (X = Se and Te). Chem Phys Lett 620:7–12CrossRefGoogle Scholar
  47. 47.
    Liu MX, Li QZ, Li WZ, Cheng JB (2016) Tetrel bonds between PySiX3 and some nitrogenated bases: Hybridization, substitution, and cooperativity. J Mol Graphics Model 65:35–42CrossRefGoogle Scholar
  48. 48.
    Liu MX, Li QZ, Li WZ, Cheng JB, McDowell SAC (2016) Comparison of hydrogen, halogen, and tetrel bonds in the complexes of HArF with YH3X (X = halogen, Y = C and Si). RSC Adv 6:19136–19143CrossRefGoogle Scholar
  49. 49.
    Wei QC, Li QZ, Cheng JB, Li WZ, Li HB (2016) Comparison of tetrel bonds and halogen bonds in complexes of DMSO with ZF3X (Z = C and Si; X = halogen). RSC Adv 6:79245–79253CrossRefGoogle Scholar
  50. 50.
    Mani D, Arunan E (2014) The X–C···π (X = F, Cl, Br, Cn) carbon bond. J Phys Chem A 118:10081–10089CrossRefGoogle Scholar
  51. 51.
    Gargari MS, Stilinović V, Bauzá A, Frontera A, McArdle P, Derveer DV, Ng SW, Mahmoudi G (2015) Design of lead (II) metal–organic frameworks based on covalent and tetrel bonding. Chem Eur J 21:17951–17958CrossRefGoogle Scholar
  52. 52.
    Southern SA, Bryce DL (2015) NMR investigations of noncovalent carbon tetrel bonds. Computational assessment and initial experimental observation J Phys Chem A 119:11891–11899Google Scholar
  53. 53.
    Donald KJ, Tawfik M (2013) The weak helps the strong: Sigma-holes and the stability of MF4· base complexes. J Phys Chem A 117:14176–14183CrossRefGoogle Scholar
  54. 54.
    Marín-Luna M, Alkorta I, Elguero J (2016) Cooperativity in tetrel bonds. J Phys Chem A 120:648–656CrossRefGoogle Scholar
  55. 55.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  56. 56.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Scalmani G, Cossi M, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene MLXKJE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VGDS, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MAPCY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Gonzalez C, Wong MW, Pittsburgh PA, Pople JA (2009) Gaussian 09, revision A02. Gaussian Inc., WallingfordGoogle Scholar
  57. 57.
    Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: Areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691CrossRefGoogle Scholar
  58. 58.
    Riley KE, Tran KA, Lane P, Murray JS, Politzer P (2016) Comparative analysis of electrostatic potential maxima and minima on molecular surfaces, as determined by three methods and a variety of basis sets. J Comput Sci DOI. doi: 10.1016/j.jocs.2016.03.010 Google Scholar
  59. 59.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor view-point. Chem Rev 88:899–926CrossRefGoogle Scholar
  60. 60.
    Bader RFW (2000) AIM2000 Program, v 2.0. McMaster University, Hamilton, CanadaGoogle Scholar
  61. 61.
    Su PF, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131:014102CrossRefGoogle Scholar
  62. 62.
    Schmidt MW, Baldridge KK, Boalz JA, Elbert ST, Gorden MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery Jr JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  63. 63.
    Mackie ID, DiLabio GA (2011) Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies. J Chem Phys 135:134318CrossRefGoogle Scholar
  64. 64.
    Liu MX, Yang L, Li QZ, Li WZ, Cheng JB, Xiao B, Yu XF (2016) Modulating the strength of tetrel bonding through beryllium bonding. J Mol Model 22:192CrossRefGoogle Scholar
  65. 65.
    Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52CrossRefGoogle Scholar
  66. 66.
    Lipkowski P, Grabowski SJ, Robinson TL, Leszczynski J (2004) Properties of the CH∙∙∙H dihydrogen bond: An ab initio and topological analysis. J Phys Chem A 108:10865–10872CrossRefGoogle Scholar
  67. 67.
    Arnold WD, Oldfield E (2000) The chemical nature of hydrogen bonding in proteins via NMR: J-couplings, chemical shifts, and AIM theory. J Am Chem Soc 122:12835–12841CrossRefGoogle Scholar
  68. 68.
    Li QZ, Lin QQ, Li WZ, Cheng JB, Gong BA, Sun JZ (2008) Cooperativity between the halogen bond and the hydrogen bond in H3N⋅⋅⋅XY⋅⋅⋅HF complexes (X, Y = F, Cl, Br). ChemPhysChem 9:2265–2269CrossRefGoogle Scholar
  69. 69.
    Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012) Concerted interaction between pnicogen and halogen bonds in XCl-FH2P-NH3 (X = F, OH, CN, NC, and FCC). ChemPhysChem 13:1205–1212CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mingxiu Liu
    • 1
  • Qingzhong Li
    • 1
  • Wenzuo Li
    • 1
  • Jianbo Cheng
    • 1
  1. 1.The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical EngineeringYantai UniversityYantaiPeople’s Republic of China

Personalised recommendations