Structural Chemistry

, Volume 28, Issue 2, pp 371–378 | Cite as

How weak an acid can be? Variations of H-bond and/or van der Waals Interaction of Weak Acids

  • Szebasztián Szaniszló
  • Imre G. Csizmadia
  • András Perczel
Original Research
  • 230 Downloads

Abstract

Complex formation ability and stability of both weak and super-weak acids was studied by mean of in silico determined thermodynamic data of the complexes. While weak acids act like Brønsted acids forming hydrogen bond type Brønsted complexes, super-weak acids form Lewis complexes via van der Waals interaction. Unlike in the former type, upon complexation, C-H distances changes insignificantly, yet the complex formation is energy driven in the terms of zero-point corrected Energies, ΔEzp < 0 kcal mol−1, which supports the Lewis complex formation, with the exception of CH4, an extremely “weak acid”.

Graphical abstract

Selected NBOs of the complexes formed between NC-CH2-H (Lewis acid) with dioxolane as well as NC-O-H (Brønsted acid) and dioxolane.

Keywords

Acids super-weak acids C-H hydrogen bond Lewis acid and complex Brønsted acid and complex 

References

  1. 1.
    Moore TS, Winmill TF (1912) J. Chem. Soc. 10:1635CrossRefGoogle Scholar
  2. 2.
    Hellgren M, Kaiser C, de Haij S, Norberg A, Höög JO (2007) CMLS 64(23):3129–3138CrossRefGoogle Scholar
  3. 3.
    Alberts et al. (1994) The Molecular Biology of the Cell. Garland Science, New YorkGoogle Scholar
  4. 4.
    Arunan E et al. (2011) Pure Appl. Chem 83:1619–1636Google Scholar
  5. 5.
    Desiraju GR (1991) Acc. Chem. Res 24:290–296CrossRefGoogle Scholar
  6. 6.
    Glasstone S (1937) Trans Faraday Soc. 33:200CrossRefGoogle Scholar
  7. 7.
    Raghavendra B, Arunan E (2008) Chem. Phys. Lett. 467:37–40CrossRefGoogle Scholar
  8. 8.
    Olah GA (2005) JOC 70(7):2413–2429Google Scholar
  9. 9.
    Kuleshova LN, Zorkii PM (1980) Acta Cryst. Sect. B 37:1363–1366CrossRefGoogle Scholar
  10. 10.
    Mikenda WJ (1986) Mol. Struct. 147:1–15CrossRefGoogle Scholar
  11. 11.
    Legon AC, Millen DJ (1987) Chem. Soc. Rev 16:467–498CrossRefGoogle Scholar
  12. 12.
    Kirchner MT et al. (2014) J.Am.Chem.Soc. 5:7630–7645Google Scholar
  13. 13.
    Ramabhadran RO, Hua Y, Li YJ, Flood AH, Raghavachari K (2011) Chem. - A Eur. J. 17:9123–9129CrossRefGoogle Scholar
  14. 14.
    Tresca BW, Zakharov LN, Carroll CN, Johnson DW, Haley MM (2013) Chem. Commun. 49:7240–7242CrossRefGoogle Scholar
  15. 15.
    Sarma M, Chatterjee T, Das SK (2012) RSC Adv 2:3920–3926. doi:10.1039/C2RA20109G
  16. 16.
    Pauling L (1932) J. Am. Chem. Soc. 54:3570–3582CrossRefGoogle Scholar
  17. 17.
    Hammett LP (1937) J. Am. Chem. Soc 59(1):96CrossRefGoogle Scholar
  18. 18.
    Hammet L. P., (1970) Phys Org Chem. McGraw-Hill, New YorkGoogle Scholar
  19. 19.
    Weels PR (1968) Linear Free Energy Relationships. Academic Press, New YorkGoogle Scholar
  20. 20.
    Taft RW, Lewitt LS (1977) J. Org. Chem. 42:916–918CrossRefGoogle Scholar
  21. 21.
    Taft RW (1960) J. Phys. Chem. 64:1805–1815CrossRefGoogle Scholar
  22. 22.
    Ehrenson S, Brownlee RTC, Taft RW (1973) Prog. Phys. Org. Chem. 10:1–80Google Scholar
  23. 23.
    Charton M (1981) Prog. Phys. Org. Chem. 13:119–151CrossRefGoogle Scholar
  24. 24.
    Csizmadia IG, Ruff F (1994) Organic Reactions Equilibria, Kinetics and Mechanism. Elsevier, New YorkGoogle Scholar
  25. 25.
    Curtis LA, Ragahavachari K, Redfen PC, Rassolov V, Pople JA (1998) J. Chem.Phys. 109:7764CrossRefGoogle Scholar
  26. 26.
    Vianello R, Maksić ZB (2004) European J. Org. Chem. 5003–5010Google Scholar
  27. 27.
    Gaussian 09 (2010) Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr., Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc., WallingfordGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Szebasztián Szaniszló
    • 1
  • Imre G. Csizmadia
    • 2
  • András Perczel
    • 1
    • 3
  1. 1.Laboratory of Structural Chemistry and Biology, Institute of ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.Department of ChemistryUniversity of TorontoTorontoCanada
  3. 3.MTA-ELTE, Protein Modelling Research GroupBudapestHungary

Personalised recommendations