Skip to main content

An insight on the aromatic changes in closed shell icosagen, tetrel, and pnictogen phenalenyl derivatives

Abstract

A computational study of the aromatic and antiaromatic characteristics of closed shell charged phenalenyl (PLY+1 and PLY−1) upon replacement of the central carbon atom by icosagen (B, Al and Ga), tetrel (Si and Ge) and pnictogen (N, P and As) atoms comprising systems in which the icosagen and pnictogen derivatives considered are neutral while the tetrel ones are anions or cations, has been carried out at the B3LYP/6–311++G(d,p) computational level. By substitution, two different kinds of structures have been obtained, one planar (N and B) and another one bowl-shaped depending on the size of the central atom. In terms of aromaticity, the substitution of the central C atom causes a loss of the aromatic character in all cases as indicated by nucleus-independent chemical shifts (NICS) profiles and NICS values on the 0.001 au isosurface. Regarding the charge, PLY+1 presents larger electron delocalisation than PLY−1, phenomenon associated with aromaticity. Furthermore, the current density maps for those planar systems corroborate NICS findings, showing anticlockwise currents in PLY+1 (like in benzene) but clockwise in PLY-N0 and PLY-B0, indicating aromatic and antiaromatic behaviour, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Sun Z, Wu J (2012) J Mater Chem 22:4151–4160

    CAS  Article  Google Scholar 

  2. Roy SR, Nijamudheen A, Pariyar A, Ghosh A, Vardhanapu PK, Mandal PK, Datta A, Mandal SK (2014) ACS Catal 4:4307–4319

    CAS  Article  Google Scholar 

  3. Li D, Liu M, Chen J, Lan J, Huang X, Wu H (2013) Dyes Pigments 97:389–396

    CAS  Article  Google Scholar 

  4. Späth A, Leibl C, Cieplik F, Lehner K, Regensburger J, Hiller K-A, Bäumler W, Schmalz G, Maisch T (2014) J Med Chem 57:5157–5168

    Article  CAS  Google Scholar 

  5. Elsebai MF, Saleem M, Tejesvi MV, Kajula M, Mattila S, Mehiri M, Turpeinen A, Pirttila AM (2014) Nat Prod Rep 31:628–645

    CAS  Article  Google Scholar 

  6. Reid DH (1958) Tetrahedron 3:339–352

    CAS  Article  Google Scholar 

  7. Morita Y, Nishida S (2010) Phenalenyls, Cyclopentadienyls, ans other carbon-centered radicals. Wiley-Interscience, Chichester

    Google Scholar 

  8. Sogo PB, Nakazaki M, Calvin M (1957) J Chem Phys 26:1343–1345

    CAS  Article  Google Scholar 

  9. Morita Y, Suzuki S, Fukui K, Nakazawa S, Kitagawa H, Kishida H, Okamoto H, Naito A, Sekine A, Ohashi Y, Shiro M, Sasaki K, Shiomi D, Sato K, Takui T, Nakasuji K (2008) Nat Mater 7:48–51

    CAS  Article  Google Scholar 

  10. Kubo T, Shimizu A, Sakamoto M, Uruichi M, Yakushi K, Nakano M, Shiomi D, Sato K, Takui T, Morita Y, Nakasuji K (2005) Angew Chem Int Ed 44:6564–6568

    CAS  Article  Google Scholar 

  11. Shimizu A, Uruichi M, Yakushi K, Matsuzaki H, Okamoto H, Nakano M, Hirao Y, Matsumoto K, Kurata H, Kubo T (2009) Angew Chem Int Ed 48:5482–5486

    CAS  Article  Google Scholar 

  12. Itkis ME, Chi X, Cordes AW, Haddon RC (2002) Science 296:1443–1445

    CAS  Article  Google Scholar 

  13. Goto K, Kubo T, Yamamoto K, Nakasuji K, Sato K, Shiomi D, Takui T, Kubota M, Kobayashi T, Yakusi K, Ouyang J (1999) J Am Chem Soc 121:1619–1620

    CAS  Article  Google Scholar 

  14. Cyrański MK, Havenith RWA, Dobrowolski MA, Gray BR, Krygowski TM, Fowler PW, Jenneskens LW (2007) Chem Eur J 13:2201–2207

    Article  CAS  Google Scholar 

  15. Morita Y, Suzuki S, Sato K, Takui T (2011) Nat Chem 3:197–204

    CAS  Article  Google Scholar 

  16. O’Connor GD, Troy TP, Roberts DA, Chalyavi N, Fückel B, Crossley MJ, Nauta K, Stanton JF, Schmidt TW (2011) J Am Chem Soc 133:14554–14557

    Article  CAS  Google Scholar 

  17. Broser W, Kurreck H, Oestreich-Janzen S, Schlömp G, Fey HJ, Kirste B (1979) Tetrahedron 35:1159–1166

    CAS  Article  Google Scholar 

  18. Hicks RG (2007) Org Biomol Chem 5:1321–1338

    CAS  Article  Google Scholar 

  19. Nishida S, Kariyazono K, Yamanaka A, Fukui K, Sato K, Takui T, Nakasuji K, Morita Y (2011) Chemi Asian J 6:1188–1196

    CAS  Article  Google Scholar 

  20. Wang M-Z, Cai X-H, Luo X-D (2011) Helv Chim Acta 94:61–66

    CAS  Article  Google Scholar 

  21. Sarkar A, Pal SK, Itkis ME, Tham FS, Haddon RC (2012) J Mater Chem 22:8245–8256

    CAS  Article  Google Scholar 

  22. Mukherjee A, Sen TK, Ghorai PK, Mandal SK (2013) Sci Rep 3:2821

    Article  Google Scholar 

  23. Lenk R, Tessier A, Lefranc P, Silvestre V, Planchat A, Blot V, Dubreuil D, Lebreton J (2014) J Org Chem 79:9754–9761

    CAS  Article  Google Scholar 

  24. Romero-Nieto C, López-Andarias A, Egler-Lucas C, Gebert F, Neus J-P, Pilgram O (2015) Angew Chem Int Ed. 54:15872–15875

  25. Zoellner JM, Zoellner RW (2008) J Mol Struc THEOCHEM 863:50–54

    CAS  Article  Google Scholar 

  26. Piccinato MT, da Costa MF, Ota AT, Guedes CLB, Di Mauro E (2015) Magn Reson Chem 53:99–102

    CAS  Article  Google Scholar 

  27. Haddon R (1975) Aust J Chem 28:2343–2351

    CAS  Article  Google Scholar 

  28. Kinoshita K, Kawakami T, Yoshimura S, Saito T, Kitagawa Y, Yamanaka S, Okumura M, Yamaguchi K (2015) Bull Chem Soc Jpn 88:149–161

    Article  CAS  Google Scholar 

  29. Quiñonero D, Frontera A, Deyà PM, Alkorta I, Elguero J (2008) Chem Phys Lett 460:406–410

    Article  CAS  Google Scholar 

  30. Pogodin S, Agranat I (2007) J Org Chem 72:10096–10107

    CAS  Article  Google Scholar 

  31. Tian Y-H, Sumpter BG, Du S, Huang J (2015) J Phys Chem Lett 6:2318–2325

    CAS  Article  Google Scholar 

  32. Zoellner JM, Zoellner RW (2009) J Mol Struc THEOCHEM 904:49–56

    CAS  Article  Google Scholar 

  33. Mou Z, Uchida K, Kubo T, Kertesz M (2014) J Am Chem Soc 136:18009–18022

    CAS  Article  Google Scholar 

  34. Hou Y, Wang H, Li Z, Liu Y, Wan X, Xue X, Chen Y, Yu A (2011) Tetrahedron Lett 52:3670–3673

    CAS  Article  Google Scholar 

  35. Mukherjee A, Sen T, Mandal S, Kratzert D, Stalke D, DÖRing A, Schulzke C (2011) J Chem Sci 123:139–144

    CAS  Article  Google Scholar 

  36. Berg DJ, Sun J, Twamley B (2006) Chem Commun 38:4019–4021

    Article  CAS  Google Scholar 

  37. Suzuki S, Morita Y, Fukui K, Sato K, Shiomi D, Takui T, Nakasuji K (2006) J Am Chem Soc 128:2530–2531

    CAS  Article  Google Scholar 

  38. Chen S, Sun S-L, Wu H-Q, Xu H-L, Zhao L, Su Z-M (2014) Dalton Trans 43:12657–12662

    CAS  Article  Google Scholar 

  39. Cui Z-H, Lischka H, Beneberu HZ, Kertesz M (2014) J Am Chem Soc 136:5539–5542

    CAS  Article  Google Scholar 

  40. Kolb B, Kertesz M, Thonhauser T (2013) J Phys Chem A 117:3642–3649

    CAS  Article  Google Scholar 

  41. Zaitsev V, Rosokha SV, Head-Gordon M, Kochi JK (2006) J Org Chem 71:520–526

    CAS  Article  Google Scholar 

  42. Lü J-M, Rosokha SV, Kochi JK (2003) J Am Chem Soc 125:12161–12171

    Article  CAS  Google Scholar 

  43. Small D, Zaitsev V, Jung Y, Rosokha SV, Head-Gordon M, Kochi JK (2004) J Am Chem Soc 126:13850–13858

    CAS  Article  Google Scholar 

  44. Small D, Rosokha SV, Kochi JK, Head-Gordon M (2005) J Phys Chem A 109:11261–11267

    CAS  Article  Google Scholar 

  45. Takeuchi H (2013) Comput Theor Chem 1021:84–90

    CAS  Article  Google Scholar 

  46. Wang L, Wang W-Y, Ma N-N, Tian D-M, Wang J, Qiu Y-Q (2015) J Mol Graph Model 55:33–40

    CAS  Article  Google Scholar 

  47. Mou Z, Kubo T, Kertesz M (2015) Chem Eur J. 21:18230–18236

  48. Sen TK, Mukherjee A, Modak A, Ghorai PK, Kratzert D, Granitzka M, Stalke D, Mandal SK (2012) Chem Eur J 18:54–58

    CAS  Article  Google Scholar 

  49. Lin S, Boudjouk P (1980) J Organomet Chem 187:C11–C14

    CAS  Article  Google Scholar 

  50. Akhmedov NG, Malyugina SG, Mstislavsky VI, Oprunenko YF, Roznyatovsky VA, Ustynyuk YA, Batsanov AS, Ustynyuk NA (1998) Organometallics 17:4607–4619

    CAS  Article  Google Scholar 

  51. Chi X, Itkis ME, Patrick BO, Barclay TM, Reed RW, Oakley RT, Cordes AW, Haddon RC (1999) J Am Chem Soc 121:10395–10402

    CAS  Article  Google Scholar 

  52. Mandal SK, Itkis ME, Chi X, Samanta S, Lidsky D, Reed RW, Oakley RT, Tham FS, Haddon RC (2005) J Am Chem Soc 127:8185–8196

    CAS  Article  Google Scholar 

  53. Mandal SK, Samanta S, Itkis ME, Jensen DW, Reed RW, Oakley RT, Tham FS, Donnadieu B, Haddon RC (2006) J Am Chem Soc 128:1982–1994

    CAS  Article  Google Scholar 

  54. Pal SK, Itkis ME, Tham FS, Reed RW, Oakley RT, Haddon RC (2005) Science 309:281–284

    CAS  Article  Google Scholar 

  55. Li H, Liu F, Xiao Y, Pellechia PJ, Smith MD, Qian X, Wang G, Wang Q (2014) Tetrahedron 70:5872–5877

    CAS  Article  Google Scholar 

  56. Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2016) Tetrahedron 72:4690–4699

    Article  CAS  Google Scholar 

  57. Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Article  Google Scholar 

  58. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    CAS  Article  Google Scholar 

  59. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    CAS  Article  Google Scholar 

  60. Binning RC, Curtiss LA (1990) J Comput Chem 11:1206–1216

    CAS  Article  Google Scholar 

  61. McGrath MP, Radom L (1991) J Chem Phys 94:511–516

    CAS  Article  Google Scholar 

  62. Curtiss LA, McGrath MP, Blaudeau JP, Davis NE, Binning RC, Radom L (1995) J Chem Phys 103:6104–6113

    CAS  Article  Google Scholar 

  63. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Hommes NJRVE (1996) J Am Chem Soc 118:6317–6318

    CAS  Article  Google Scholar 

  64. London F (1937) J Phys Radium 8:397–409

    CAS  Article  Google Scholar 

  65. Ditchfield R (1974) Mol Phys 27:789–807

    CAS  Article  Google Scholar 

  66. Sánchez-Sanz G, Alkorta I, Trujillo C, Elguero J (2012) Tetrahedron 68:6548–6556

    Article  CAS  Google Scholar 

  67. Sánchez-Sanz G, Trujillo C, Rozas I, Elguero J (2013) Tetrahedron 69:7333–7344

    Article  CAS  Google Scholar 

  68. Bulat F, Toro-Labbé A, Brinck T, Murray J, Politzer P (2010) J Mol Model 16:1679–1691

    CAS  Article  Google Scholar 

  69. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J and Fox DJ (2009) Gaussian 09, Revision d1, Inc., Wallingford CT

  70. Silva AMS, Sousa RMS, Jimeno ML, Blanco F, Alkorta I, Elguero J (2008) Magn Reson Chem 46:859–864

    CAS  Article  Google Scholar 

  71. Dobrowolski JC, Lipinski PFJ (2016) RSC Adv 6:23900–23904

    CAS  Article  Google Scholar 

  72. Fowler PW, Steiner E (1997) J Phys Chem A 101:1409–1413

    CAS  Article  Google Scholar 

  73. Fowler PW, Steiner E, Havenith RWA, Jenneskens LW (2004) Magn Reson Chem 42:S68–S78

    CAS  Article  Google Scholar 

  74. Bean DE, Fowler PW (2011) J Phys Chem A 115:13649–13656

    CAS  Article  Google Scholar 

  75. Keith TA, Version 15.09.27 edn., (2015), pp. TK Gristmill Software,(aim.tkgristmill.com)

  76. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    CAS  Article  Google Scholar 

  77. Glendening ED, Weinhold F (1998) J Comput Chem 19:593–609

    CAS  Article  Google Scholar 

  78. Glendening ED, Badenhoop JK, Weinhold F (1998) J Comput Chem 19:628–646

    CAS  Article  Google Scholar 

  79. Kruszewski J, Krygowski TM (1972) Tetrahedron Lett 13:3839–3842

    Article  Google Scholar 

  80. Szwacki N, Weber V, Tymczak C (2009) Nanoscale Res Lett 4:1085–1089

    Article  CAS  Google Scholar 

  81. Krygowski TM (1993) J Chem Inf Comp Sci 33:70–78

    CAS  Article  Google Scholar 

  82. Zborowski K, Alkorta I, Elguero J, Proniewicz L (2012) Struct Chem 23:595–600

    CAS  Article  Google Scholar 

  83. Mohammadinezhad E, Raissi H, Farzad F (2014) RSC Adv 4:60519–60525

    CAS  Article  Google Scholar 

  84. Güell M, Matito E, Luis JM, Poater J, Solà M (2006) J Phys Chem A 110:11569–11574

    Article  CAS  Google Scholar 

  85. Feixas F, Matito E, Poater J, Sola M (2015) Chem Soc Rev 44:6434–6451

    CAS  Article  Google Scholar 

  86. Stanger A (2006) J Org Chem 71:883–893

    CAS  Article  Google Scholar 

  87. Solà M, Feixas F, Jiménez-Halla JOC, Matito E, Poater J (2010) Symmetry 2:1156–1179

    Article  CAS  Google Scholar 

  88. von Ragué SP, Manoharan M, Wang Z-X, Kiran B, Jiao H, Puchta R, van Eikema Hommes NJR (2001) Org Lett 3:2465–2468

    Article  Google Scholar 

  89. Baranac-Stojanović M, Koch A, Kleinpeter E (2012) Chem Eur J 18:370–376

    Article  CAS  Google Scholar 

  90. Torres JJ, Islas R, Osorio E, Harrison JG, Tiznado W, Merino G (2013) J Phys Chem A 117:5529–5533

    CAS  Article  Google Scholar 

  91. Islas R, Martínez-Guajardo G, Jiménez-Halla JOC, Solà M, Merino G (2010) J Chem Theor Comput 6:1131–1135

    CAS  Article  Google Scholar 

  92. Sánchez-Sanz G (2015) Tetrahedron 71:826–839

    Article  CAS  Google Scholar 

  93. Sanchez-Sanz G, Trujillo C, Rozas I, Alkorta I (2015) Phys Chem Chem Phys 17:14961–14971

    CAS  Article  Google Scholar 

  94. Ghiasi R (2008) J Mol Struc THEOCHEM 853:77–81

    CAS  Article  Google Scholar 

  95. Kassaee MZ, Ghambarian M, Musavi SM (2008) Heteroat Chem 19:377–388

    CAS  Article  Google Scholar 

  96. Tsipis CA (2005) Coord Chem Rev 249:2740–2762

    CAS  Article  Google Scholar 

  97. Winkler M, Cakir B, Sander W (2004) J Am Chem Soc 126:6135–6149

    CAS  Article  Google Scholar 

  98. Alkorta I, Azofra L, Sánchez-Sanz G, Elguero J (2012) Struct Chem 23:1245–1252

    CAS  Article  Google Scholar 

  99. Karadakov PB (2008) J Phys Chem A 112:7303–7309

    CAS  Article  Google Scholar 

  100. Karadakov PB (2008) J Phys Chem A 112:12707–12713

    CAS  Article  Google Scholar 

  101. Minkin VI, Glukhovtsev MN, By S (1994) Aromaticity and antiaromaticity. Electronic and structural aspects. John Wiley & Sons, New York

  102. Jackman LM (1962) Applications of nuclear magnetic resonance spectroscopy in organic chemistry. Pergamon Press, London

    Google Scholar 

  103. Aita K, Ohmae T, Takase M, Nomura K, Kimura H, Nishinaga T (2013) Org Lett 15:3522–3525

    CAS  Article  Google Scholar 

  104. Keith TA (1996) Chem Phys 213:123–132

    CAS  Article  Google Scholar 

  105. Keith TA, Bader RFW (1992) Chem Phys Lett 194:1–8

    CAS  Article  Google Scholar 

  106. Steiner E, Fowler PW (1996) Int J Quantum Chem 60:609–616

    CAS  Article  Google Scholar 

  107. Katritzky AR, Karelson M, Sild S, Krygowski TM, Jug K (1998) J Org Chem 63:5228–5231

    CAS  Article  Google Scholar 

  108. Alkorta I, Elguero J (1999) New J Chem 23:951–954

    CAS  Article  Google Scholar 

  109. Katritzky AR, Jug K, Oniciu DC (2001) Chem Rev 101:1421–1450

    CAS  Article  Google Scholar 

  110. Gershoni-Poranne R, Stanger A (2015) Chem Soc Rev 44:6597–6615

    CAS  Article  Google Scholar 

  111. Mazurek A, Dobrowolski JC (2012) J Org Chem 77:2608–2618

    CAS  Article  Google Scholar 

  112. Soncini A, Fowler PW (2013) Chem Eur J 19:1740–1746

    CAS  Article  Google Scholar 

  113. Reisi-Vanani A, Rezaei AA (2015) J Mol Graph Model 61:85–88

    CAS  Article  Google Scholar 

  114. Faust R (1995) Angew Chem Int Ed 34:1429–1432

    CAS  Article  Google Scholar 

  115. Perez EM, Martin N (2008) Chem Soc Rev 37:1512–1519

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Thanks are given to the Human Frontier Science Program (Project Reference: LT001022/2013-C) for the support and to the Irish Centre for High-End Computing (ICHEC) and Centro de Computación Científica de la Universidad Autónoma de Madrid (CCC-UAM) for the provision of computational facilities. This work has been supported by the Spanish Ministerio de Economía y Competitividad (CTQ2015-63997-C2-2-P) and Comunidad Autónoma de Madrid (S2013/MIT-2841, Fotocarbon). Computer, storage and other resources from the CTI (CSIC) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goar Sánchez-Sanz.

Electronic supplementary material

ESM 1

(DOC 460 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trujillo, C., Sánchez-Sanz, G., Alkorta, I. et al. An insight on the aromatic changes in closed shell icosagen, tetrel, and pnictogen phenalenyl derivatives. Struct Chem 28, 345–355 (2017). https://doi.org/10.1007/s11224-016-0882-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0882-y

Keywords

  • Aromaticity
  • NICS
  • Wiberg bond indices
  • Tetrel
  • Pnictogen
  • Icosagen
  • Phenalenyl