Structural Chemistry

, Volume 28, Issue 3, pp 833–847 | Cite as

Statistical methods and molecular docking for the prediction of thyroid hormone receptor subtype binding affinity and selectivity

Original Research


The development of compounds that selectively modulate thyroid hormone action by serving as subtype-selective ligands of the thyroid hormone receptors (TRs) would be useful for clinical therapy. In the present work, quantitative structure-activity relationship (QSAR) models by adopting molecular descriptors to predict the TR binding activity were established based on a data set of TR ligands. The linear (multiple linear regression (MLR) and partial least squares regression (PLSR)) and nonlinear (support vector machine regression (SVR)) methods were employed to investigate the relationship between structural properties and binding activities. The proposed PLSR model was slightly superior to the MLR model and SVR model, as indicated by the reasonable statistical properties (TRβ: Rtr2 = 0.9594, Qte2 = 0.8091. TRα: Rtr2 = 0.9705, Qte2 = 0.8057). Additionally, molecular docking simulations were also performed to study the probable binding modes of the ligands and the TR subtype selectivity. The results indicate that substituents located in region A, region B, and region C and the orientation of these groups might result in the subtype selectivity based on the hydrogen bonding and electrostatic interactions. The derived QSAR models together with the molecular docking results have good potential in facilitating the discovery of novel TR ligands with improved activity and subtype selectivity.


Receptor Selectivity QSAR Molecular docking 



The study was supported by the 12th Five-Year Plan for Science and Technology Development (No. 2012BAD33B05).

Supplementary material

11224_2016_876_MOESM1_ESM.docx (47 kb)
ESM 1 Supplementary material is available on the publisher’s website along with the published article (DOCX 46 kb)


  1. 1.
    Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81:1097–1142Google Scholar
  2. 2.
    Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81:1269–1304Google Scholar
  3. 3.
    Malm J (2004) Thyroid hormone ligands and metabolic diseases. Curr Pharm Des 10:3525–3532CrossRefGoogle Scholar
  4. 4.
    Yen PM, Ando S, Xu F, Ying L, Maruvada P, Xia X (2006) Thyroid hormone action at the cellular, genomic and target gene levels. Molecular & Cellular Endocrinology 246:121–127CrossRefGoogle Scholar
  5. 5.
    Zhang J, Lazar MA (2000) The mechanism of action of thyroid hormones. Br J Clin Pharmacol 62:439–466Google Scholar
  6. 6.
    Chan IH, Privalsky ML (2009) Isoform-specific transcriptional activity of overlapping target genes that respond to thyroid hormone receptors alpha1 and beta1. Mol Endocrinol 23:1758–1775CrossRefGoogle Scholar
  7. 7.
    Flamant F, Baxter JD, Forrest D, Refetoff S, Samuels H, Scanlan TS, Vennström B, Samarut J (2006) International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol Rev 58:705–711CrossRefGoogle Scholar
  8. 8.
    Wu Y, Koenig RJ (2000) Gene regulation by thyroid hormone. Trends in Endocrinology & Metabolism Tem 11:207–211CrossRefGoogle Scholar
  9. 9.
    Bassett JHD, Harvey CB, Williams GR (2003) Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Molecular & Cellular Endocrinology 213:1–11CrossRefGoogle Scholar
  10. 10.
    Davis PJ, Davis FB, Lin HY, Mousa SA, Zhou M, Luidens MK (2009) Translational implications of nongenomic actions of thyroid hormone initiated at its integrin receptor. American Journal of Physiology Endocrinology & Metabolism:297Google Scholar
  11. 11.
    Forrest D, Vennström B (2000) Functions of thyroid hormone receptors in mice. Thyroid Official Journal of the American Thyroid Association 10:41–52CrossRefGoogle Scholar
  12. 12.
    Nguyen NH, Apriletti JW, Baxter JD, Scanlan TS (2005) Hammett analysis of selective thyroid hormone receptor modulators reveals structural and electronic requirements for hormone antagonists. J Am Chem Soc 127:4599–4608CrossRefGoogle Scholar
  13. 13.
    Johansson C, Vennström B, Thorén P (1998) Evidence that decreased heart rate in thyroid hormone receptor-alpha1-deficient mice is an intrinsic defect. Am J Phys 275:640–646Google Scholar
  14. 14.
    Takeda K, Sakurai A, Degroot LJ, Refetoff S (1992) Recessive inheritance of thyroid hormone resistance caused by complete deletion of the protein-coding region of the thyroid hormone receptor-beta gene. Journal of Clinical Endocrinology & Metabolism 74:49–55Google Scholar
  15. 15.
    Baxter JD, Dillmann WH, West BL, Huber R, Furlow JD, Fletterick RJ, Webb P, Apriletti JW, Scanlan TS (2001) Selective modulation of thyroid hormone receptor action ☆. Journal of Steroid Biochemistry & Molecular Biology 76:31–42CrossRefGoogle Scholar
  16. 16.
    Collazo A-MG, Koehler KF, Garg N, Färnegårdh M, Husman B, Ye L, Ljunggren J, Mellström K, Sandberg J, Grynfarb M (2006) Thyroid receptor ligands. Part 5: novel bicyclic agonist ligands selective for the thyroid hormone receptor β. Bioorg Med Chem Lett 16:1240–1244CrossRefGoogle Scholar
  17. 17.
    Garg N, Li Y-L, Collazo AMG, Litten C, Ryono DE, Zhang M, Caringal Y, Brigance RP, Meng W, Washburn WN (2007) Thyroid receptor ligands. Part 8: thyromimetics derived from N-acylated-α-amino acid derivatives displaying modulated pharmacological selectivity compared with KB-141. Bioorg Med Chem Lett 17:4131–4134CrossRefGoogle Scholar
  18. 18.
    Hangel JJ, Al E, et al. (2004) Thyroid receptor ligands. Part 2: thyromimetics with improved selectivity for the thyroid hormone receptor beta. Bioorg Med Chem Lett 14:3549–3553CrossRefGoogle Scholar
  19. 19.
    Hedfors A, Appelqvist T, Carlsson B, Bladh LG, Litten C, Agback P, Grynfarb M, Koehler KF, Malm J (2005) Thyroid receptor ligands. 3. Design and synthesis of 3,5-dihalo-4-alkoxyphenylalkanoic acids as indirect antagonists of the thyroid hormone receptor. J Med Chem 48:3114–3117CrossRefGoogle Scholar
  20. 20.
    Li Y-L, Litten C, Koehler KF, Mellström K, Garg N, Collazo AMG, Färnegård M, Grynfarb M, Husman B, Sandberg J (2006) Thyroid receptor ligands. Part 4: 4′-amido bioisosteric ligands selective for the thyroid hormone receptor beta. Bioorg Med Chem Lett 16:884–886CrossRefGoogle Scholar
  21. 21.
    Malm J, Gordon S, Brandt P, Carlsson B, Agback P, Saeidi AB, Sandberg J (2007) Thyroid receptor ligands. Part 7: indirect antagonists of the thyroid hormone receptor with improved affinity. Bioorg Med Chem Lett 17:2018–2021CrossRefGoogle Scholar
  22. 22.
    Ye L , Li YL, Mellström K, Mellin C,  Bladh LG, Koehler K,  Garg N, Collazo AMG,  Litten C, Husman B (2003) Thyroid receptor ligands. 1. Agonist ligands selective for the thyroid receptor β1. J Med Chem 46:1580–1588Google Scholar
  23. 23.
    Boyer SH, Jiang H, Jacintho JD, Reddy MV, Li H, Li W, Godwin JL, Schulz WG, Cable EE, Hou J (2008) Synthesis and biological evaluation of a series of liver-selective phosphonic acid thyroid hormone receptor agonists and their prodrugs. J Med Chem 51:7075–7093CrossRefGoogle Scholar
  24. 24.
    Burkholder TP, Cunningham BE, Clayton JR, Lander PA, Brown ML, Doti RA, Durst GL, Montrose-Rafizadeh C, King C, Osborne HE (2015) Design and synthesis of a novel series of [1-(4-hydroxy-benzyl)-1H-indol-5-yloxy]-acetic acid compounds as potent, selective, thyroid hormone receptor β agonists. Bioorg Med Chem Lett 25:1377–1380CrossRefGoogle Scholar
  25. 25.
    Shiohara H, Nakamura T, Kikuchi N, Ozawa T, Nagano R, Matsuzawa A, Ohnota H, Miyamoto T, Ichikawa K, Hashizume K (2012) Discovery of novel indane derivatives as liver-selective thyroid hormone receptor β (TRβ) agonists for the treatment of dyslipidemia. Bioorg Med Chem 20:3622–3634CrossRefGoogle Scholar
  26. 26.
    Shiohara H, Nakamura T, Kikuchi N, Ozawa T, Matsuzawa A, Nagano R, Ohnota H, Miyamoto T, Ichikawa K, Hashizume K (2013) Design, synthesis, and structure–activity relationship (SAR) of N-[7-(4-hydroxyphenoxy)-6-methylindan-4-yl] malonamic acids as thyroid hormone receptor β (TRβ) selective agonists. Bioorg Med Chem 21:592–607CrossRefGoogle Scholar
  27. 27.
    Todeschini, R., Consonni, V., (2000). Handbook of molecular descriptorsGoogle Scholar
  28. 28.
    Wang F, Li Y, Ma Z, Wang X, Wang Y (2012) Structural determinants of benzodiazepinedione/peptide-based p53-HDM2 inhibitors using 3D-QSAR, docking and molecular dynamics. J Mol Model 18:295–306CrossRefGoogle Scholar
  29. 29.
    Wang F, Ma Z, Li Y, Zhu S, Xiao Z, Zhang H, Wang Y (2011) Development of in silico models for pyrazoles and pyrimidine derivatives as cyclin-dependent kinase 2 inhibitors. J Mol Graph Model 30:67–81CrossRefGoogle Scholar
  30. 30.
    Wang Y, Li Y, Ding J, Wang Y, Chang Y (2008b) Prediction of binding affinity for estrogen receptor α modulators using statistical learning approaches. Mol Divers 12:93–102CrossRefGoogle Scholar
  31. 31.
    Wang Y, Li Y, Ding J, Jiang Z, Chang Y (2008a) Estimation of bioconcentration factors using molecular electro-topological state and flexibility. SAR QSAR Environ Res 19:375–395CrossRefGoogle Scholar
  32. 32.
    Hansch, C., Leo, A., (1979). Substituent constants for correlation analysis in chemistry and biology. WileyGoogle Scholar
  33. 33.
    Sjöström M, Wold S, Lindberg W, Persson J-Å, Martens H (1983) A multivariate calibration problem in analytical chemistry solved by partial least-squares models in latent variables. Anal Chim Acta 150:61–70CrossRefGoogle Scholar
  34. 34.
    Ding G, Chen J, Qiao X, Huang L, Lin J, Chen X (2006) Quantitative relationships between molecular structures, environmental temperatures and solid vapor pressures of PCDD/Fs. Chemosphere 62:1057–1063CrossRefGoogle Scholar
  35. 35.
    Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130CrossRefGoogle Scholar
  36. 36.
    Wold S, Ruhe A, Wold H, Dunn III WJ (1984) The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J Sci Stat Comput 5:735–743Google Scholar
  37. 37.
    Liu H, Xue C, Zhang R, Yao X, Liu M, Hu Z, Fan BT (2004) Quantitative prediction of log k of peptides in high-performance liquid chromatography based on molecular descriptors by using the heuristic method and support vector machine. J Chem Inf Comput Sci 44:1979–1986CrossRefGoogle Scholar
  38. 38.
    Xue C, Zhang R, Liu H, Yao X, Liu M, Hu Z, Fan BT (2004) QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and a support vector machine. J Chem Inf Comput Sci 44:1693–1700CrossRefGoogle Scholar
  39. 39.
    Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222CrossRefGoogle Scholar
  40. 40.
    Kohonen T, Somervuo P (1998) Self-organizing maps of symbol strings. Neurocomputing 21:19–30CrossRefGoogle Scholar
  41. 41.
    Jaworska J (2005) QSAR applicability domain estimation by projection of the training set in descriptor space: a review. Alternatives to Laboratory Animals Atla 33:445–459Google Scholar
  42. 42.
    Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemometrics & Intelligent Laboratory Systems 145:22–29CrossRefGoogle Scholar
  43. 43.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662CrossRefGoogle Scholar
  44. 44.
    Patronov A, Dimitrov I, Flower DR, Doytchinova I (2011) Peptide binding prediction for the human class II MHC allele HLA-DP2: a molecular docking approach. BMC Struct Biol 11:1CrossRefGoogle Scholar
  45. 45.
    Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784CrossRefGoogle Scholar
  46. 46.
    Guha R, Serra JR, Jurs PC (2004) Generation of QSAR sets with a self-organizing map. J Mol Graph Model 23:1–14CrossRefGoogle Scholar
  47. 47.
    Jain HK, Agrawal RK (2006) QSAR analysis of indomethacin derivatives as selective COX–2 inhibitors. Internet Electronic Journal of Molecular Design 5:224–236Google Scholar
  48. 48.
    Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714–3717CrossRefGoogle Scholar
  49. 49.
    Khajeh A, Modarress H (2012) QSPR prediction of surface tension of refrigerants from their molecular structures. Int J Refrig 35:150–159CrossRefGoogle Scholar
  50. 50.
    Manivannan E, Chaturvedi S (2012) Analogue-based design, synthesis and docking of non-steroidal anti-inflammatory agents. Part 2: methyl sulfanyl/methyl sulfonyl substituted 2, 3-diaryl-2, 3-dihydro-1H-quinazolin-4-ones. Bioorg Med Chem 20:7119–7127CrossRefGoogle Scholar
  51. 51.
    MacKay DJ (1992) A practical Bayesian framework for backpropagation networks. Neural Comput 4:448–472CrossRefGoogle Scholar
  52. 52.
    Salum LB, Polikarpov I, Andricopulo AD (2008) Structure-based approach for the study of estrogen receptor binding affinity and subtype selectivity. J Chem Inf Model 48:2243–2253CrossRefGoogle Scholar
  53. 53.
    Schölkopf, B., Burges, C. J., (1999). Advances in kernel methods: support vector learning. MIT pressGoogle Scholar
  54. 54.
    Schuur J, Gasteiger J (1997) Infrared spectra simulation of substituted benzene derivatives on the basis of a 3D structure representation. Anal Chem 69:2398–2405CrossRefGoogle Scholar
  55. 55.
    Todeschini R, Gramatica P (2001) New 3D molecular descriptors: the WHIM theory and QSAR applications. Perspectives in Drug Discovery & Design 9-11:355–380CrossRefGoogle Scholar
  56. 56.
    Todeschini R, Gramatica P (1997a) 3D-modelling and prediction by WHIM descriptors. Part 6. Application of WHIM descriptors in QSAR studies. Quantitative Structure-Activity Relationships 16:120–125CrossRefGoogle Scholar
  57. 57.
    Todeschini R, Gramatica P (1997b) SD-modelling and prediction by WHIM descriptors. Part 5. Theory development and chemical meaning of WHIM descriptors. Quantitative Structure-Activity Relationships 16:113–119CrossRefGoogle Scholar
  58. 58.
    Todeschini R, Lasagni M, Marengo E (1994) New molecular descriptors for 2D and 3D structures. Theory Journal of chemometrics 8:263–272CrossRefGoogle Scholar
  59. 59.
    Todeschini R, Gramatica P, Provenzani R, Marengo E (1995) Weighted holistic invariant molecular descriptors. Part 2. Theory development and applications on modeling physicochemical properties of polyaromatic hydrocarbons. Chemom Intell Lab Syst 27:221–229CrossRefGoogle Scholar
  60. 60.
    Todeschini R, Vighi M, Finizio A, Gramatica P (1997) 30-modelling and prediction by WHIM descriptors. Part 8. Toxicity and physico-chemical properties of environmental priority chemicals by 2D-TI and 3D-WHIM descriptors. SAR QSAR Environ Res 7:173–193CrossRefGoogle Scholar
  61. 61.
    Todeschini R, Vighi M, Provenzani R, Finizio A, Gramatica P (1996a) Modeling and prediction by using WHIM descriptors in QSAR studies: toxicity of heterogeneous chemicals on Daphnia magna. Chemosphere 32:1527–1545CrossRefGoogle Scholar
  62. 62.
    Todeschini R, Bettiol C, Giurin G, Gramatica P, Miana P, Argese E (1996b) Modeling and prediction by using WHIM descriptors in QSAR studies: submitochondrial particles (SMP) as toxicity blosensors of chlorophenols. Chemosphere 33:71–79CrossRefGoogle Scholar
  63. 63.
    Vedani A, Dobler M, Lill MA (2006) The challenge of predicting drug toxicity in silico. Basic & clinical pharmacology & toxicology 99:195–208CrossRefGoogle Scholar
  64. 64.
    Vedani A, Zumstein M, Lill MA, Ernst B (2007) Simulating α/β selectivity at the human thyroid hormone receptor: consensus scoring using multidimensional QSAR. ChemMedChem 2:78–87CrossRefGoogle Scholar
  65. 65.
    Du J, Qin J, Liu H, Yao X (2008) 3D-QSAR and molecular docking studies of selective agonists for the thyroid hormone receptor β. J Mol Graph Model 27:95–104CrossRefGoogle Scholar
  66. 66.
    Li F, Xie Q, Li X, Li N, Chi P, Chen J, Wang Z, Hao C (2010) Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-β: in vitro and in silico investigations. Environmental health perspectives (Online) 118:602CrossRefGoogle Scholar
  67. 67.
    Kim KH, Greco G, Novellino E (1998) A critical review of recent CoMFA applications. In: Kubinyi H, Folkers G, Martin YC (eds) 3D QSAR in drug design – recent advances, vol. 3. Kluwer Academic Publishers, New York, pp. 257–315Google Scholar
  68. 68.
    Sutherland JJ, O'Brien LA, Weaver DF (2004) A comparison of methods for modeling quantitative structure-activity relationships. J Med Chem 47:5541–5554CrossRefGoogle Scholar
  69. 69.
    Kuntz ID, Meng EC, Shoichet BK (1994) Structure-based molecular design. Acc Chem Res 27:117–123CrossRefGoogle Scholar
  70. 70.
    Wang FF, Wei Y, Shi YH, Cheng XR, Le GW (2015) Structure-based approach for the study of thyroid hormone receptor binding affinity and subtype selectivity. J Biomol Struct Dyn 34:2251–2267Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.The State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina

Personalised recommendations