Structural Chemistry

, Volume 28, Issue 1, pp 173–199 | Cite as

Looking at aniline-phenol recognition in molecular crystals: an evergreen endeavour

  • Ankush Sood
  • Gautam R. DesirajuEmail author
Review Article


This retrospect describes research in our group in the University of Hyderabad and in the Indian Institute of Science, Bangalore over a period of 25 years on a topic in structural chemistry that has been both intriguing and invigorating. The theme of hydrogen bond-based amine-hydroxy recognition in organic crystals is cast against an overall background of developments in crystal engineering from the early 1990s up to the present time. This article is divided into two parts: the first is a somewhat autobiographical and sometimes informal account of how and why various things were done over the years, while the second takes the form of a current result-oriented study.


Crystal engineering Hydrogen bond Molecular recognition Supramolecular synthon Supramolecular chemistry Crystallography 



One of us (GRD) thanks the Department of Science and Technology and the Council of Scientific and Industrial Research for support of his research programs over the last few decades. We thank Dr. S. P. Gopi and Dr. M. Banik for their assistance in collecting X-ray data on the compounds reported here and solving and refining the structures.

Supplementary material

11224_2016_869_MOESM1_ESM.docx (2.9 mb)
ESM 1 (DOCX 2919 kb)


  1. 1.
    Desiraju GR (1989) Crystal engineering: the design of organic solids. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Powell HM, Riesz P (1948) Beta-quinol: an example of the firm union of molecules without the formation of chemical bonds between them. Nature 161(4080):52–53CrossRefGoogle Scholar
  3. 3.
    Ubbelohde AR, Robertson JM (1937) A new form of resorcinol. Nature 140(3536):239–239CrossRefGoogle Scholar
  4. 4.
    Robertson JM (1953) Organic crystals and molecules. Cornell University Press, LondonGoogle Scholar
  5. 5.
    Etter MC (1990) Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 23(4):120–126CrossRefGoogle Scholar
  6. 6.
    Desiraju GR (2007) Crystal engineering: a holistic view. Angew Chem 46(44):8342–8356CrossRefGoogle Scholar
  7. 7.
    Kitaigorodskii AI (1973) Molecular crystals and molecules. Academic Press, New YorkGoogle Scholar
  8. 8.
    Zorkii PM, Zorkaya ON (1998) Ordinary organic crystal chemistry. Interpretation of the most probable homomolecular structures. J Struct Chem 39(1):103–124CrossRefGoogle Scholar
  9. 9.
    Leiserowitz L, Schmidt GMJ (1969) Molecular packing modes. Part III. Primary amides. J Chem Soc A (0):2372–2382Google Scholar
  10. 10.
    Leiserowitz L (1976) Molecular packing modes. Carboxylic acids. Acta Crystallogr B 32(3):775–802CrossRefGoogle Scholar
  11. 11.
    Leiserowitz L, Nader F (1977) The molecular packing modes and the hydrogen-bonding properties of amide:dicarboxylic acid complexes. Acta Crystallogr B 33(9):2719–2733CrossRefGoogle Scholar
  12. 12.
    Ramakrishnan C, Ramachandran GN (1965) Stereochemical criteria for polypeptide and protein chain conformations. Biophys J 5(6):909–933CrossRefGoogle Scholar
  13. 13.
    Desiraju GR (1995) Supramolecular synthons in crystal engineering—a new organic synthesis. Angew Chem 34(21):2311–2327CrossRefGoogle Scholar
  14. 14.
    Allen FH, Hoy VJ, Howard JAK, Thalladi VR, Desiraju GR, Wilson CC, McIntyre GJ (1997) Crystal engineering and correspondence between molecular and crystal structures. Are 2- and 3-aminophenols anomalous? J Am Chem Soc 119(15):3477–3480CrossRefGoogle Scholar
  15. 15.
    Vangala VR, Desiraju GR, Jetti RKR, Bläser D, Boese R (2002) A 1:1 molecular complex of bis(4-aminophenyl) disulfide and 4-aminothiophenol. Acta Crystallogr B 58(10):o635–o636Google Scholar
  16. 16.
    Vangala VR, Bhogala BR, Dey A, Desiraju GR, Broder CK, Smith PS, Mondal R, Howard JA, Wilson CC (2003) Correspondence between molecular functionality and crystal structures. Supramolecular chemistry of a family of homologated aminophenols. J Am Chem Soc 125(47):14495–14509CrossRefGoogle Scholar
  17. 17.
    Bhogala BR, Vangala VR, Smith PS, Howard JAK, Desiraju GR (2004) A novel saturated hydrogen bridge architecture in supraminols. Cryst Growth Des 4(4):647–649CrossRefGoogle Scholar
  18. 18.
    Dey A, Desiraju GR, Mondal R, Howard JA (2004) Crystal engineering in the aminophenols. Novel carborundum network in a supramolecular homologous series. Chem Commun 10(22):2528–2529CrossRefGoogle Scholar
  19. 19.
    Jetti RK, Boese R, Thakur TS, Vangala VR, Desiraju GR (2004) Proton transfer and N(+)-H···S(−) hydrogen bonds in the crystal structure of 4-aminothiophenol. Chem Commun 22:2526–2527CrossRefGoogle Scholar
  20. 20.
    Dey A, Kirchner MT, Vangala VR, Desiraju GR, Mondal R, Howard JA (2005) Crystal structure prediction of aminols: advantages of a supramolecular synthon approach with experimental structures. J Am Chem Soc 127(30):10545–10559CrossRefGoogle Scholar
  21. 21.
    Vangala VR, Mondal R, Broder CK, Howard JAK, Desiraju GR (2005) Dianiline-diphenol molecular complexes based on supraminol recognition. Cryst Growth Des 5(1):99–104CrossRefGoogle Scholar
  22. 22.
    Dey A, Desiraju GR (2006) Dimorphs of 4′-amino-4-hydroxy-2′-methylbiphenyl: assessment of likelihood of polymorphism in flexible molecules. CrystEngComm 8(6):477CrossRefGoogle Scholar
  23. 23.
    Dey A, Pati NN, Desiraju GR (2006) Crystal structure prediction with the supramolecular synthon approach: experimental structures of 2-amino-4-ethylphenol and 3-amino-2-naphthol and comparison with prediction. CrystEngComm 8(10):751CrossRefGoogle Scholar
  24. 24.
    Mukherjee A, Dixit K, Sarma SP, Desiraju GR (2014) Aniline-phenol recognition: from solution through supramolecular synthons to cocrystals. IUCrJ 1(Pt 4):228–239CrossRefGoogle Scholar
  25. 25.
    Ermer O, Eling A (1994) Molecular recognition among alcohols and amines: super-tetrahedral crystal architectures of linear diphenol–diamine complexes and aminophenols. J Chem Soc Perkin Trans 2(5):925–944CrossRefGoogle Scholar
  26. 26.
    Hanessian S, Gomtsyan A, Simard M, Roelens S (1994) Molecular recognition and self-assembly by weak hydrogen bonding: unprecedented supramolecular helicate structures from diamine/diol motifs. J Am Chem Soc 116(10):4495–4496CrossRefGoogle Scholar
  27. 27.
    Desiraju GR (2003) Crystal and co-crystal. CrystEngComm 5(82):466CrossRefGoogle Scholar
  28. 28.
    Dunitz JD (2003) Crystal and co-crystal: a second opinion. CrystEngComm 5(91):506CrossRefGoogle Scholar
  29. 29.
    Moelwyn-Hughes EA (1961) Physical chemistry, 2nd edn. Pergamon, OxfordGoogle Scholar
  30. 30.
    Cox EG, Cruickshank DWJ, Smith JAS (1958) The crystal structure of benzene at −3° C. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 247(1248):1–21CrossRefGoogle Scholar
  31. 31.
    Trotter J (1961) The crystal and molecular structure of biphenyl. Acta Crystallogr 14(11):1135–1140CrossRefGoogle Scholar
  32. 32.
    Hargreaves A, Rizvi SH (1962) The crystal and molecular structure of biphenyl. Acta Crystallogr 15(4):365–373CrossRefGoogle Scholar
  33. 33.
    Bacon GE, Curry NA, Wilson SA (1964) A crystallographic study of solid benzene by neutron diffraction. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 279(1376):98–110CrossRefGoogle Scholar
  34. 34.
    Laxmi Madhavi NN, Bilton C, Howard JAK, Allen FH, Nangia A, Desiraju GR (2000) Seeking structural repetitivity in systems with interaction interference: crystal engineering in the gem-alkynol family. New J Chem 24(1):1–4CrossRefGoogle Scholar
  35. 35.
    Desiraju GR, Vittal JJ, Ramanan A (2011) Crystal engineering: a textbook. World Scientific, SingaporeCrossRefGoogle Scholar
  36. 36.
    Mootz D, Brodalla D, Wiebcke M (1989) Structures of monoethanolamine (MEAM), diethanolamine (DEAM) and triethanolamine (TEAM). Acta Crystallogr C 45(5):754–757CrossRefGoogle Scholar
  37. 37.
    Meyers EA, Lipscomb WN (1955) The crystal structure of hydroxylamine. Acta Crystallogr 8(9):583–587CrossRefGoogle Scholar
  38. 38.
    Donohue J (1958) Hydrogen bonding in crystalline hydroxylamine. Acta Crystallogr 11(7):512–512CrossRefGoogle Scholar
  39. 39.
    Jerslev B (1958) Note on the hydrogen bonding in the crystal structure of hydroxylamine. Acta Crystallogr 11(7):511–511CrossRefGoogle Scholar
  40. 40.
    Toda F, Hyoda S, Okada K, Hirotsu K (1995) Isolation of anhydrous hydrazine as stable inclusion complexes with hydroquinone and p-methoxyphenol, and their solid state reaction with esters which gives pure hydrazides. J Chem Soc Chem Commun 15:1531CrossRefGoogle Scholar
  41. 41.
    Hanessian S, Simard M, Roelens S (1995) Molecular recognition and self-assembly by non-amidic hydrogen bonding. An exceptional assembler of neutral and charged supramolecular structures. J Am Chem Soc 117(29):7630–7645CrossRefGoogle Scholar
  42. 42.
    Loehlin JH, Franz KJ, Gist L, Moore RH (1998) Supramolecular alcohol–amine crystals and their hydrogen-bond patterns. Acta Crystallogr B 54(5):695–704CrossRefGoogle Scholar
  43. 43.
    Roelens S, Dapporto P, Paoli P (2000) Hydrogen bonded supramolecular structures: a further insight into the diamine-diol recognition and self-assembly. Can J Chemistry 78(6):723–731CrossRefGoogle Scholar
  44. 44.
    Hanessian S, Saladino R, Margarita R, Simard M (1999) Supramolecular chirons based on enantiodifferentiating self-assembly between amines and alcohols (supraminols). Chem Eur J 5(7):2169–2183CrossRefGoogle Scholar
  45. 45.
    Nangia A (2000) Supramolecular chirons. Curr Sci India 78(4):375Google Scholar
  46. 46.
    de Rango C, Brunie S, Tsoucaris G, Declercq JP, Germain G (1974) Meta-aminophenol, C6H7NO. Cryst Struct Commun 3:485Google Scholar
  47. 47.
    Korp JD, Bernal I, Aven L, Mills JL (1981) A redetermination of the crystal structure of 2-aminophenol. J Cryst Mol Struct 11(5–6):117–124CrossRefGoogle Scholar
  48. 48.
    Viswamitra MA, Radhakrishnan R, Bandekar J, Desiraju GR (1993) Evidence for O-H···C and N-H···C hydrogen bonding in crystalline alkynes, alkenes, and aromatics. J Am Chem Soc 115(11):4868–4869CrossRefGoogle Scholar
  49. 49.
    Desiraju GR (1991) The C-H···O hydrogen bond in crystals: what is it? Acc Chem Res 24(10):290–296CrossRefGoogle Scholar
  50. 50.
    Desiraju GR (1996) The C-H···O hydrogen bond: structural implications and supramolecular design. Acc Chem Res 29(9):441–449CrossRefGoogle Scholar
  51. 51.
    Desiraju GR (2002) Hydrogen bridges in crystal engineering: interactions without Borders. Acc Chem Res 35(7):565–573CrossRefGoogle Scholar
  52. 52.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, OxfordGoogle Scholar
  53. 53.
    Madhavi NNL, Desiraju GR, Katz AK, Carrell HL, Nangia A (1997) Evidence for the characterisation of the C–H···π interaction as a weak hydrogen bond: toluene and chlorobenzene solvates of 2,3,7,8-tetraphenyl-1,9,10-anthyridine. Chem Commun 20:1953CrossRefGoogle Scholar
  54. 54.
    Kitaigorodskii AI (1984) Mixed crystals. Springer, New YorkCrossRefGoogle Scholar
  55. 55.
    Sarma JARP, Desiraju GR (2002) The supramolecular synthon approach to crystal structure prediction. Cryst Growth Des 2(2):93–100CrossRefGoogle Scholar
  56. 56.
    Loehlin JH, Etter MC, Gendreau C, Cervasio E (1994) Hydrogen-bond patterns in several 2:1 amine-phenol cocrystals. Chem Mater 6(8):1218–1221CrossRefGoogle Scholar
  57. 57.
    Kalman A, Pérkanyi L (1997) A tool to estimate the complementarity of homo- and heteromolecular associates. Advances in molecular structure research 3:189CrossRefGoogle Scholar
  58. 58.
    Fábián L, Kálmán A (1999) Volumetric measure of isostructurality. Acta Crystallogr B 55(6):1099–1108CrossRefGoogle Scholar
  59. 59.
    Desiraju GR (2013) Crystal engineering: from molecule to crystal. J Am Chem Soc 135(27):9952–9967CrossRefGoogle Scholar
  60. 60.
    Peacor D, Buerger M (1962) Determination and refinement of structure of narsarsukite Na2TiOSi4O10. J Am Mineral 47:539–556Google Scholar
  61. 61.
    Ribeiro FR, Rodrigues AE, Rollmann LD, Naccache C (1984) Zeolites: science and technology. NATO ASI Series, BostonCrossRefGoogle Scholar
  62. 62.
    Verma AR, Krishna P (1966) Polytypism and polymorphism in crystals. Wiley, New YorkGoogle Scholar
  63. 63.
    Thakur TS, Dubey R, Desiraju GR (2015) Crystal structure and prediction. Annu Rev Phys Chem 66:21–42CrossRefGoogle Scholar
  64. 64.
    Reilly AM, Cooper RI, Adjiman CS, Bhattacharya S, Boese AD, Brandenburg JG, Bygrave PJ, Bylsma R, Campbell JE, Car R, Case DH, Chadha R, Cole JC, Cosburn K, Cuppen HM, Curtis F, Day GM, DiStasio Jr RA, Dzyabchenko A, van Eijck BP, Elking DM, van den Ende JA, Facelli JC, Ferraro MB, Fusti-Molnar L, Gatsiou CA, Gee TS, de Gelder R, Ghiringhelli LM, Goto H, Grimme S, Guo R, Hofmann DW, Hoja J, Hylton RK, Iuzzolino L, Jankiewicz W, de Jong DT, Kendrick J, de Klerk NJ, Ko HY, Kuleshova LN, Li X, Lohani S, Leusen FJ, Lund AM, Lv J, Ma Y, Marom N, Masunov AE, McCabe P, McMahon DP, Meekes H, Metz MP, Misquitta AJ, Mohamed S, Monserrat B, Needs RJ, Neumann MA, Nyman J, Obata S, Oberhofer H, Oganov AR, Orendt AM, Pagola GI, Pantelides CC, Pickard CJ, Podeszwa R, Price LS, Price SL, Pulido A, Read MG, Reuter K, Schneider E, Schober C, Shields GP, Singh P, Sugden IJ, Szalewicz K, Taylor CR, Tkatchenko A, Tuckerman ME, Vacarro F, Vasileiadis M, Vazquez-Mayagoitia A, Vogt L, Wang Y, Watson RE, de Wijs GA, Yang J, Zhu Q, Groom CR (2016) Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr B 72(Pt 4):439–459CrossRefGoogle Scholar
  65. 65.
    Ganguly P, Desiraju GR (2010) Long-range synthon Aufbau modules (LSAM) in crystal structures: systematic changes in C6H6 − nFn(0 ≤ n ≤ 6) fluorobenzenes. CrystEngComm 12(3):817–833CrossRefGoogle Scholar
  66. 66.
    Kitaigorodskii AI (1961) Organic chemical crystallography. Consultants Bureau, New YorkGoogle Scholar
  67. 67.
    Dubey R, Mir NA, Desiraju GR (2016) Quaternary cocrystals: combinatorial synthetic strategies based on long-range synthon Aufbau modules (LSAM). IUCrJ 3(Pt 2):102–107CrossRefGoogle Scholar
  68. 68.
    Mir NA, Dubey R, Desiraju GR (2016) Four- and five-component molecular solids: crystal engineering strategies based on structural inequivalence. IUCrJ 3(Pt 2):96–101CrossRefGoogle Scholar
  69. 69.
    Desiraju GR (2002) Stimulating concepts in chemistry. Wiley-VCH, WeinheimGoogle Scholar
  70. 70.
    Banerjee R, Bhatt PM, Kirchner MT, Desiraju GR (2005) Structural studies of the system Na(saccharinate)n H2O: a model for crystallization. Angew Chem 44(17):2515–2520CrossRefGoogle Scholar
  71. 71.
    Mukherjee A, Desiraju GR (2011) Halogen bonding and structural modularity in 2,3,4- and 3,4,5-trichlorophenol. Cryst Growth Des 11(9):3735–3739CrossRefGoogle Scholar
  72. 72.
    Desiraju GR (2005) Chemistry—the middle kingdom. Curr Sci India 88(3):374–380Google Scholar
  73. 73.
    Bhogala BR, Thallapally PK, Nangia A (2004) 1:2 and 1:1 Ag(I)-Isonicotinamide coordination compounds: five-fold interpenetrated CdSO4 network and the first example of (pyridine)N − Ag − O(amide) bonds. Cryst Growth Des 4(2):215–218CrossRefGoogle Scholar
  74. 74.
    SeethaLekshmi S, Guru Row TN (2011) Propensity of formation of zipper architectures vs. Lincoln log arrangement in solvated molecular complexes of melamine with hydroxybenzoic acids. CrystEngComm 13(15):4886CrossRefGoogle Scholar
  75. 75.
    Gunnam A, Suresh K, Ganduri R, Nangia A (2016) Crystal engineering of a zwitterionic drug to neutral cocrystals: a general solution for floxacins. Chem Commun 52(85):12610–12613CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations