Structural Chemistry

, Volume 28, Issue 3, pp 773–790 | Cite as

Experimental and theoretical investigation of new furan and thiophene derivatives containing oxazole, isoxazole, or isothiazole subunits

  • Pervin Ünal Civcir
  • Gülbin Kurtay
  • Kübra Sarıkavak
Original Research


Herein, we present joint experimental and theoretical studies on newly designed thiophene- or furan-based oxazole, isoxazole, and isothiazole derivatives. Our synthetic approach towards the preparation of target compounds is based on Van Leusen reaction. By following this reaction, oxazoles (1 and 2) containing the pertinent heterocyclic systems were obtained from the reaction of suitable furan or thiophene derivatives with tosylmethyl isocyanide (TOSMIC). Hereby, three ring systems of furan or thiophene, linked to the oxazole rings at their 2- and 5-positions (3 and 4), were also successfully synthesized for the first time. Reaction of the starting materials containing acetyl groups in their 2-position with dimethyl acetal and following the treatment by hydroxylamine hydrochloride, desired isoxazole derivatives (5 and 6), were obtained. Additionally, isothiazole derivatives (7 and 8) were prepared by following the similar approach to the isoxazole synthesis. Whole of these cyclization reactions occurred with good to excellent yields. Structural analyses of the synthesized compounds were performed by appropriate spectroscopic methods (UV-vis, FT-IR, LC-MS, 1H-NMR, 13C-NMR, and elemental analysis). We also carried out theoretical studies for identifying the structure-activity relationship and determining chemical properties of the studied molecules. For this purpose, we obtained information about structural properties (bond lengths, bond angles, dihedral angles, and dipole moments), band gap energies, and spectroscopic characteristics (UV-vis, FT-IR, 1H-NMR, and 13C-NMR) of the target compounds.

Graphical abstract


Oxazole Isoxazole Isothiazole Thiophene Furan DFT 



Pervin Ünal Civcir would like to express her gratitude to AU-BAP (Project No: 13H4240002) for financial support. The numerical calculations reported in this research were performed at TUBITAK-ULAKBİM. High Performance and Grid Computing Center (TR-Grid e-Infrastructure).

Supplementary material

11224_2016_863_MOESM1_ESM.pptx (5.8 mb)
ESM 1 (PPTX 5927 kb)
11224_2016_863_MOESM2_ESM.pptx (9 mb)
ESM 2 (PPTX 9202 kb)


  1. 1.
    Maertens JA (2004) History of the development of azole derivatives. Clin Microbiol Infect 10(Suppl 1):1–10. doi: 10.1111/j.1470-9465.2004.00841.x CrossRefGoogle Scholar
  2. 2.
    Linder J, Moody CJ (2007) The total synthesis of siphonazole, a structurally unusual bis-oxazole natural product. Chem Commun 1508–1509. doi: 10.1039/b618160kGoogle Scholar
  3. 3.
    Danilo D, Gloria S (2010) Thiazole and oxazole alkaloids: isolation and synthesis. Mar Drugs 8:2755–2780. doi: 10.3390/md8112755 CrossRefGoogle Scholar
  4. 4.
    Yamada K, Yajima O, Yoshizawa Y, Oh K (2013) Synthesis and biological evaluation of novel azole derivatives as selective potent inhibitors of brassinosteroid biosynthesis. Bioorganic Med Chem 21:2451–2461. doi: 10.1016/j.bmc.2013.03.006 CrossRefGoogle Scholar
  5. 5.
    Gomma GK (1998) Effect of azole compounds on corrosion of copper in acid medium. Mater Chem Phys 56:27–34. doi: 10.1016/S0254-0584(98)00086-8 CrossRefGoogle Scholar
  6. 6.
    Mahdavian M, Ashhari S (2010) Mercapto functional azole compounds as organic corrosion inhibitors in a polyester-melamine coating. Prog Org Coatings 68:259–264. doi: 10.1016/j.porgcoat.2010.04.002 CrossRefGoogle Scholar
  7. 7.
    Kovačević N, Kokalj A (2013) The relation between adsorption bonding and corrosion inhibition of azole molecules on copper. Corros Sci 73:7–17. doi: 10.1016/j.corsci.2013.03.016 CrossRefGoogle Scholar
  8. 8.
    Hughes RA, Moody CJ (2007) From amino acids to heteroaromatics-thiopeptide antibiotics, nature's heterocyclic peptides. Angew Chem Int Ed 46:7930–7954. doi: 10.1002/anie.200700728 CrossRefGoogle Scholar
  9. 9.
    Zhang J, Ciufolini MA (2011) An approach to the bis-oxazole macrocycle of diazonamides. Org Lett 13:390–393. doi: 10.1021/ol102678j CrossRefGoogle Scholar
  10. 10.
    Liu XH, Lv PC, Xue JY, Song BA, Zhu HL (2009) Novel 2,4,5-trisubstituted oxazole derivatives: synthesis and antiproliferative activity. Eur J Med Chem 44:3930–3935. doi: 10.1016/j.ejmech.2009. 04.019 CrossRefGoogle Scholar
  11. 11.
    Zhou J, Jin J, Zhang Y, Yin Y, Chen X, Xu B (2013) Synthesis and antiproliferative evaluation of novel benzoimidazole-contained oxazole-bridged analogs of combretastatin A-4. Eur J Med Chem 68:222–232. doi: 10.1016/j.ejmech.2013.08.006 CrossRefGoogle Scholar
  12. 12.
    Li YM, Milne JC, Madison LL, Kolter R, Walsh CT (1996) From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science 274:1188–1193. doi: 10.1126/science.274.5290.1188 CrossRefGoogle Scholar
  13. 13.
    Dinarello CA (2010) Anti-inflammatory agents: present and future. Cell 140:935–950. doi: 10.1016/j.cell.2010.02.043 CrossRefGoogle Scholar
  14. 14.
    Fernandes E, Costa D, Toste SA, Jose LF, Lima SR (2004) In vitro scavenging activity for reactive oxygen and nitrogen species by nonsteroidal anti-inflammatory indole, pyrrole, and oxazole derivative drugs. Free Radic Biol Med 37:1895–1905. doi: 10.1016/j.freeradbiomed.2004.09.001 CrossRefGoogle Scholar
  15. 15.
    Boyd RE, Press JB, Rasmussen CR, Raffa RB, Codd EE, Connelly CD, Bennett DJ, Kirifides AL, Gardocki JF, Reynolds B, Hortenstein JT, Reitz AB (1999) Alpha(2) adrenoceptor agonists as potential analgesic agents. 1. (Imidazolylmethyl)oxazoles and -thiazoles. J Med Chem 42:5064–5071. doi: 10.1021/jm990005a CrossRefGoogle Scholar
  16. 16.
    Gürsoy A, Demirayak Ş, Çapan G, Erol K, Vural K (2000) Synthesis and preliminary evaluation of new 5-pyrazolinone derivatives as analgesic agents. Eur J Med Chem 35:359–364. doi: 10.1016/S0223-5234(00)00117-3 CrossRefGoogle Scholar
  17. 17.
    Broom NJP, Cassels R, Cheng HY, Elder JS, Hannan PC, Masson N, O'Hanlon PJ, Pope A, Wilson JM (1996) The chemistry of pseudomonic acid. 17. Dual-action C-1 oxazole derivatives of pseudomonic acid having an extended spectrum of antibacterial activity. J Med Chem 39:3596–3600. doi: 10.1021/jm950882q CrossRefGoogle Scholar
  18. 18.
    Lu X, Liu X, Wan B, Franzblau SG, Chen L, Zhou C, You Q (2012) Synthesis and evaluation of anti-tubercular and antibacterial activities of new 4-(2,6-dichlorobenzyloxy)phenyl thiazole, oxazole and imidazole derivatives. Part 2. Eur J Med Chem 49:164–171. doi: 10.1016/j.ejmech.2012.01.007 CrossRefGoogle Scholar
  19. 19.
    Stokes NR, Baker N, Bennett JM, Chauhan PK, Collins I, Davies DT, Gavade M, Kumar D, Lancett P, Macdonald R, Macleod L, Mahajan A, Mitchell JP, Nayal N, Nayal YN, Pitt GR, Singh M, Yadav A, Srivastava A, Czaplewski LG, Haydon DJ (2014) Design, synthesis and structure-activity relationships of substituted oxazole-benzamide antibacterial inhibitors of FtsZ. Bioorganic Med Chem Lett 24:353–359. doi: 10.1016/j.bmcl.2013.11.002 CrossRefGoogle Scholar
  20. 20.
    Bull JA, Balskus EP, Horan RAJ, Langner M, Ley S V (2007) Total synthesis of potent antifungal marine bisoxazole natural products bengazoles a and b. Chem Eur J 13:5515–5538. doi: 10.1002/chem.200700033 CrossRefGoogle Scholar
  21. 21.
    Ryu C-K, Lee RY, Kim NY, Song AL (2009) Synthesis and antifungal activity of benzo[d]oxazole-4,7-diones. Bioorg Med Chem Lett 19:5924–5926. doi: 10.1016/j.bmcl.2009.08.062 CrossRefGoogle Scholar
  22. 22.
    Tomi IHR, Tomma JH, Al-Daraji AHR, Al-Dujaili AH (2015) Synthesis, characterization and comparative study the microbial activity of some heterocyclic compounds containing oxazole and benzothiazole moieties. J Saudi Chem Soc 19:392–398. doi: 10.1016/j.jscs.2012.04.010 CrossRefGoogle Scholar
  23. 23.
    Moraski GC, Chang M, Villegas-Estrada A, Franzblau SG, Möllmann U, Miller MJ (2010) Structure–activity relationship of new anti-tuberculosis agents derived from oxazoline and oxazole benzyl esters. Eur J Med Chem 45:1703–1716. doi: 10.1016/j.ejmech.2009.12.074 CrossRefGoogle Scholar
  24. 24.
    Sasahara K, Shimokawa Y, Hirao Y, Koyama N, Kitano K, Shibata M, Umehara K (2015) Pharmacokinetics and metabolism of delamanid, a novel anti-tuberculosis drug, in animals and humans: importance of albumin metabolism in vivo. Drug Metab Dispos 43:1267–1276. doi: 10.1124/dmd.115.064527 CrossRefGoogle Scholar
  25. 25.
    Yale HL, Losee K (1966) 2-amino-5-substituted 1,3,4-oxadiazoles and 5-imino-2-substituted delta-2-1,3,4-oxadiazolines. A group of novel muscle relaxants J Med Chem 9:478–483. doi: 10.1021/jm00322a007 Google Scholar
  26. 26.
    Kempf DJ, Sham HL, Marsh KC, Flentge CA, Betebenner D, Green BE, McDonald E, Vasavanonda S, Saldivar A, Wideburg NE, Kati WM, Ruiz L, Zhao C, Fino L, Patterson J, Molla A, Plattner JJ, Norbeck DW (1998) Discovery of ritonavir, a potent inhibitor of HIV protease with high oral bioavailability and clinical efficacy. J Med Chem 41:602–617. doi: 10.1021/jm970636+ CrossRefGoogle Scholar
  27. 27.
    Kang YK, Shin KJ, Yoo KH, Seo KJ, Hong CY, Lee CS, Park SY, Kim DJ, Park SW (2000) Synthesis and antibacterial activity of new carbapenems containing isoxazole moiety. Bioorg Med Chem Lett 10:95–99. doi: 10.1016/S0960-894X(99)00646-0 CrossRefGoogle Scholar
  28. 28.
    Calí P, Nærum L, Mukhija S, Hjelmencrantz A (2004) Isoxazole-3-hydroxamic acid derivatives as peptide deformylase inhibitors and potential antibacterial agents. Bioorganic Med Chem Lett 14:5997–6000. doi: 10.1016/j.bmcl.2004.09.087 CrossRefGoogle Scholar
  29. 29.
    Solankee A, Solankee S, Patel G (2008) Synthesis and antibacterial evaluation of some novel isoxazole and pyrazoline derivatives. Rasayan J Chem 1:581–585Google Scholar
  30. 30.
    Rahbaek L, Christophersen C (2001) The isoxazole alkaloids. Alkaloids Chem Biol 57:185–233. doi: 10.1016/S0099-9598(01)57004-2 CrossRefGoogle Scholar
  31. 31.
    Conti P, Tamborini L, Pinto A, Sola L, Ettari R, Mercurio C, De Micheli C (2010) Design and synthesis of novel isoxazole-based HDAC inhibitors. Eur J Med Chem 45:4331–4338. doi: 10.1016/j.ejmech.2010.06.035 CrossRefGoogle Scholar
  32. 32.
    Gehling VS, Hewitt MC, Vaswani RG, Leblanc Y, Côté A, Nasveschuk CG, Taylor AM, Harmange JC, Audia JE, Pardo E, Joshi S, Sandy P, Mertz JA, Sims 3rd RJ, Bergeron L, Bryant BM, Bellon S, Poy F, Jayaram H, Sankaranarayanan R, Yellapantula S, Bangalore SN, Birudukota S, Albrecht BK (2013) Discovery, design, and optimization of isoxazole azepine BET inhibitors. ACS Med Chem Lett 4:835–840. doi: 10.1021/ml4001485 CrossRefGoogle Scholar
  33. 33.
    Künig G, Niedermeyer B, Deckert J, Gsell W, Ransmayr G, Riederer P (1998) Inhibition of [3H]α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid [AMPA] binding by the anticonvulsant valproate in clinically relevant concentrations: an autoradiographic investigation in human hippocampus. Epilepsy Res 31:153–157. doi: 10.1016/S0920-1211(98)00022-9 CrossRefGoogle Scholar
  34. 34.
    Bolvig T, Larsson OM, Pickering DS, Nelson N, Falch E, Krogsgaard-Larsen P, Schousboe A (1999) Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity. Eur J Pharmacol 375:367–374. doi: 10.1016/S0014-2999(99)00263-0 CrossRefGoogle Scholar
  35. 35.
    Stefan H, Feuerstein TJ (2007) Novel anticonvulsant drugs. Pharmacol Ther 113:165–183. doi: 10.1016/j.pharmthera.2006.07.005 CrossRefGoogle Scholar
  36. 36.
    Epe C, Kaminsky R (2013) New advancement in anthelmintic drugs in veterinary medicine. Trends Parasitol 29:129–134. doi: 10.1016/ CrossRefGoogle Scholar
  37. 37.
    Carr JB, Durham HG, Hass DK (1977) Isoxazole anthelmintics. J Med Chem 20:934–939CrossRefGoogle Scholar
  38. 38.
    White AD, Purchase CF, Picard JA, Anderson MK, Mueller SB, Bocan TM, Bousley RF, Hamelehle KL, Krause BR, Lee P, Stanfield RL, Reindel JF (1996) Heterocyclic amides: inhibitors of acyl-CoA:cholesterol O-acyl transferase with hypocholesterolemic activity in several species and antiatherosclerotic activity in the rabbit. J Med Chem 39:3908–3919. doi: 10.1021/jm9604033 CrossRefGoogle Scholar
  39. 39.
    Burak K, Machoń Z (1992) Synthesis of isothiazole derivatives with potential biological activity. Pharmazie 47:492–495Google Scholar
  40. 40.
    Keck PE, Versiani M, Potkin S, West SA, Giller E, Ice K (2003) Ziprasidone in the treatment of acute bipolar mania: a three-week, placebo-controlled, double-blind, randomized trial. Am J Psychiatry 160:741–748. doi: 10.1176/appi.ajp.160.4.741 CrossRefGoogle Scholar
  41. 41.
    Araki T, Yamasue H, Sumiyoshi T, Kuwabara H, Suga M, Iwanami A, Kato N, Kasai K (2006) Perospirone in the treatment of schizophrenia: effect on verbal memory organization. Prog Neuro-Psychopharmacology Biol Psychiatry 30:204–208. doi: 10.1016/j.pnpbp.2005.10.015 CrossRefGoogle Scholar
  42. 42.
    Zificsak CA, Hlasta DJ (2004) Current methods for the synthesis of 2-substituted azoles. Tetrahedron 60:8991–9016. doi: 10.1016/j.tet.2004.07.016 CrossRefGoogle Scholar
  43. 43.
    Roncali J, Garnier F, Garreau R, Lemaire M (1987) Reduction of the steric hindrance to conjugation in 3,4-disubstituted poly(thiophenes); cyclopenta[c]thiophene and thieno[c]thiophene as precursors of electrogenerated conducting polymers. J Chem Soc Chem Commun 19:1500–1502. doi: 10.1039/c39870001500 CrossRefGoogle Scholar
  44. 44.
    Oldenziel OH, Leusen DV, Leusen AMV (1977) Chemistry of sulfonylmethyl isocyanides. 13. A general one-step synthesis of nitriles from ketones using tosylmethyl isocyanide. Introduction of a one-carbon unit. J Org Chem 42:3114–3118. doi: 10.1021/jo00439a002 CrossRefGoogle Scholar
  45. 45.
    Leusen DV, Leusen AMV (2004) Synthetic uses of tosylmethyl isocyanide (TosMIC). Org React 57:417–666. doi: 10.1002/0471264180.or057.03 Google Scholar
  46. 46.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb M, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CTGoogle Scholar
  47. 47.
    Dennington R, Keith T, Millam J (2009) GaussView, Version 5.0.8. GaussView, Version 5.0.8Google Scholar
  48. 48.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1A38CrossRefGoogle Scholar
  49. 49.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phy Rev A 38:3098–3100. doi: 10.1103/PhysRevA.38.3098 CrossRefGoogle Scholar
  50. 50.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi: 10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  51. 51.
    Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728. doi: 10.1063/1.1674902 CrossRefGoogle Scholar
  52. 52.
    Ha TK (1979) A theoretical study of the electronic structure and properties of some five-membered heterocyclic compounds: pyrazole, imidazole, furan, isoxazole, 1,2,5-oxadiazole and 1,3,4-oxadiazole. J Mol Struct 51:87–98. doi: 10.1016/0022-2860(79)80272-0 CrossRefGoogle Scholar
  53. 53.
    Pace A, Pierro P, Buscemi S, Vivona N, Barone G (2009) Experimental and DFT studies on competitive heterocyclic rearrangements. 3. A cascade isoxazole-1,2,4-oxadiazole-oxazole rearrangement. J Org Chem 74:351–358. doi: 10.1021/jo802081k CrossRefGoogle Scholar
  54. 54.
    Li LC, Wang XL, Cai WF, Tian AM (2011) Theoretical investigation on the reaction mechanism of aryl alcohols and p-toluenesulfonylmethyl isocyanide catalyzed by InCl3. Comput Theor Chem 964:182–187. doi: 10.1016/j.comptc.2010.12.020 CrossRefGoogle Scholar
  55. 55.
    Froese FC (1977) The Hartree-Fock method for atoms: a numerical approach. John Wiley and Sons, New York ISBN 047125990X Google Scholar
  56. 56.
    Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. doi: 10.1063/1.456153 CrossRefGoogle Scholar
  57. 57.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Accounts 120:215–241. doi: 10.1007/s00214-007-0310-x CrossRefGoogle Scholar
  58. 58.
    Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806. doi: 10.1103/PhysRev.136.B864 CrossRefGoogle Scholar
  59. 59.
    Schomaker V, Pauling L (1939) The electron diffraction investigation of the structure of benzene, pyridine, pyrazine, butatidene-1,3-cyclopentadiene, furan, pyrrole, and thiophene. J Am Chem Soc 61:1769–1780. doi: 10.1021/ja01876a038 CrossRefGoogle Scholar
  60. 60.
    Hartough HD (2009) The chemistry of heterocyclic compounds, thiophene and its derivatives. John Wiley & Sons, New YorkGoogle Scholar
  61. 61.
    Bak B, Christensen D, Dixon WB, Hansen-Nygaard L, Andersen JR, Schottländer M (1962) The complete structure of furan. J Molec Spect 9:124–129CrossRefGoogle Scholar
  62. 62.
    Kumar A, Sheridan J, Stiefvater OL (1978) The microwave spectrum of oxazole I. The complete structure by DRM microwave spectroscopy. Z Naturforsch 33a:145–152Google Scholar
  63. 63.
    Stiefvater OL (1975) The complete structure of isoxazole from naturally occurring isotopic forms by double resonance modulated microwave spectroscopy. J Chem Phys 64:2560. doi: 10.1063/1.431647 CrossRefGoogle Scholar
  64. 64.
    Elgazwy ASH (2003) The chemistry of isothiazoles. Tetrahedron 59(38):7445–7463. doi: 10.1016/S0040-4020(03)01070-6 CrossRefGoogle Scholar
  65. 65.
    Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58:1486–1493. doi: 10.1021/ja01299a050 CrossRefGoogle Scholar
  66. 66.
    Dzuba VA, Flambaum VV (2010) Current trends in searches for new physics using measurements of parity violation and electric dipole moments in atoms and molecules. arXiv:1009.4960Google Scholar
  67. 67.
    Gierke TD, Tigelaar HL, Flygare H (1972) Calculation of molecular electric dipole and quadrupole moments. J Am Chem Soc 94:330–338. doi: 10.1021/ja00757a003 CrossRefGoogle Scholar
  68. 68.
    Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271. doi: 10.1021/j100308a038 CrossRefGoogle Scholar
  69. 69.
    Guggenheim EA (1949) A proposed simplification in the procedure for computing electric dipole moments. Trans Faraday Soc 45:714. doi: 10.1039/tf9494500714 CrossRefGoogle Scholar
  70. 70.
    McClellan AL (1974) Tables of experimental dipole moments. Rahara Enterprises, El Cerrito, CAGoogle Scholar
  71. 71.
    McClellan AL (1963) Tables of experimental dipole moments. Freeman WH, San Francisco, CAGoogle Scholar
  72. 72.
    Le Fe’vre CG, Le Fe’vre RJW, Rao BP, Smith MRJ (1959) Molecular polarisability. Ellipsoids of polarisability for certain fundamental heterocycles. J Chem Soc 1188–1192. doi: 10.1039/JR9590001188Google Scholar
  73. 73.
    Dennis GR, Gentle IR, Ritchie GLD, Andrieu CG (1983) Field-gradient-induced birefringence in dilute solutions of furan, thiophene and selenophene in cyclohexane. J Chem Soc Faraday Trans 2(79):539–545. doi: 10.1039/F29837900539 CrossRefGoogle Scholar
  74. 74.
    Zhao MT, Singh BP, Prasad PN (1988) A systematic study of polarizability and microscopic third-order optical nonlinearity in thiophene oligomers. J Chem Phys 89:5535. doi: 10.1063/1.455560 CrossRefGoogle Scholar
  75. 75.
    Coonan MH, Craven IE, Hesting MR, Ritchie GLD, Spackman MA (1992) Anisotropic molecular polarizabilities, dipole moments, and quadrupole moments of (CH2)2X, (CH3)2X, and C4H4X (X = 0, S, Se). Comparison of experimental results and ab initio calculations. J Phys Chem 96:7301CrossRefGoogle Scholar
  76. 76.
    Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218. doi: 10.1063/1.477483 CrossRefGoogle Scholar
  77. 77.
    York DM, Karplus M (1999) Smooth solvation potential based on the conductor-like screening model. J Phys Chem A 103:11060–11079CrossRefGoogle Scholar
  78. 78.
    Van Veen EH (1976) Triplet π→π* transitions in thiophene, furan and pyrrole by low-energy electron-impact spectroscopy. Chem Phys Lett 41:535–539. doi: 10.1016/0009-2614(76)85411-5 CrossRefGoogle Scholar
  79. 79.
    Lang SA Jr, Lin Y (1984) In: Potts KT (ed) Comprehensive heterocyclic chemistry. Pergamon, New YorkGoogle Scholar
  80. 80.
    Scuseria GE (1999) Linear scaling density functional calculations with Gaussian orbitals. J Phys Chem A 103:4782–4790. doi: 10.1021/jp990629s CrossRefGoogle Scholar
  81. 81.
    Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90:2555–2560. doi: 10.1021/j100403a003 CrossRefGoogle Scholar
  82. 82.
    Sinha P, Boesch SE, Gu C, Wheeler RA, Wilson AK (2004) Harmonic vibrational frequencies: scaling factors for HF, B3LYP, and MP2 methods in combination with correlation consistent basis sets. Phys Chem A 108:9213–9217. doi: 10.1021/jp073974n CrossRefGoogle Scholar
  83. 83.
    Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111:11683–11700. doi: 10.1021/jp073974n CrossRefGoogle Scholar
  84. 84.
    Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric identification of organic compounds. Wiley, New YorkGoogle Scholar
  85. 85.
    Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260. doi: 10.1021/ja00179a005 CrossRefGoogle Scholar
  86. 86.
    Ditchfield R (1974) Self-consistent perturbation theory of diamagnetism. Mol Phys 27:789–807. doi: 10.1080/00268977400100711 CrossRefGoogle Scholar
  87. 87.
    Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104:5497. doi: 10.1063/1.47178 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceAnkara UniversityAnkaraTurkey

Personalised recommendations