Structural Chemistry

, Volume 28, Issue 3, pp 757–772 | Cite as

2-Methylthio-imidazolins: a rare case of different tautomeric forms in solid state and in solution

  • Venelin Enchev
  • Nadezhda Markova
  • Marin Marinov
  • Neyko Stoyanov
  • Marin Rogojerov
  • Angel Ugrinov
  • Iwona Wawer
  • Dariusz Maciej Pisklak
Original Research
  • 149 Downloads

Abstract

The synthesis and structure elucidation of two new compounds, 2-(methylthio)-1,3-diazaspiro[4.4]non-2-ene-4-one (1) and 2-(methylthio)-1,3-diazaspiro[4.4]non-2-ene-4-thione (2), are presented. Both compounds crystalized in monoclinic crystal system. Compound 1 formed plate-like colorless crystals, while compound 2 gave yellow needles. The structural and spectral characteristics of both compounds are studied by IR and NMR spectroscopy and quantum chemistry. The optimized geometry, harmonic vibrational frequencies, and NMR shielding are calculated by DFT employing B3LYP functional using 6-311++G(d,p) basis set. Our results support the hydrogen bonding pattern observed in reported crystalline structure. Evidences are given indicating that the tautomeric form in solution is different from that one in solid state. The substantial difference between positions of the characteristic C=N band in nonpolar solvent and crystalline phase for both compounds suggests that in solid state a “conjugated tautomeric form” exists, while in solution phase there is “non-conjugated tautomeric form”. In polar solvents, both tautomeric forms exist. It is suggested to call this phenomenon desmokatatropy—from Greeks δεσμός (bond) κατάσταση (state) and τρόπος (change).

Keywords

Tautomerism 2-methylthio-imidazolins Solid state Solvent effect DFT 

Notes

Acknowledgments

The calculations were performed on the computer system installed at the Institute of Organic Chemistry, Bulgarian Academy of Sciences with the financial support of the National Science Fund, Project “MADARA” (Grant DO 02-52/2008). The authors also thank the generous funding from NSF-CRIF (CHE-0946990) for the purchase of XRD instrumentation at Chemistry and Biochemistry Department, North Dakota State University.

Supplementary material

11224_2016_860_MOESM1_ESM.docx (122 kb)
Supplementary material 1 (DOCX 121 kb)

References

  1. 1.
    Geuther A (1863) Arch Pharm 166:97–110CrossRefGoogle Scholar
  2. 2.
    Baeyer A, Oekonomides S (1882) Ber Dtsch Chem Ges 15:2093–2102CrossRefGoogle Scholar
  3. 3.
    Baeyer A (1883) Ber Dtsch Chem Ges 16:2188–2204CrossRefGoogle Scholar
  4. 4.
    Laar C (1885) Ber Dtsch Chem Ges 18:648–657CrossRefGoogle Scholar
  5. 5.
    Jacobson P (1887) Ber Dtsch Chem Ges 20:1895–1903CrossRefGoogle Scholar
  6. 6.
    Hantzsch A, Herrmann F (1887) Ber Dtsch Chem Ges 20:2801–2811CrossRefGoogle Scholar
  7. 7.
    Claisen L (1896) Liebigs Ann Chem 291:25–137CrossRefGoogle Scholar
  8. 8.
    Lowry TM (1914) Proc Chem Soc 30:105–107Google Scholar
  9. 9.
    Oppe A (1914) Jahrb Radioakt Elektron 10:368–405Google Scholar
  10. 10.
    Gawinecki R, Kolehmainen E, Osmialowski B, Palkovic P, Nissinen M (1999) Heterocycl Commun 5:549–551CrossRefGoogle Scholar
  11. 11.
    Gawinecki R, Osmialowski B, Kolehmainen E, Nissinen M (2000) J Mol Struct 525:233–239CrossRefGoogle Scholar
  12. 12.
    García MA, López C, Claramunt RM, Kenz A, Pierrot M, Elguero J (2002) Helv Chim Acta 85:2763–2776CrossRefGoogle Scholar
  13. 13.
    Elguero J (2011) J Cryst Growth Des 11:4731–4738 (references therein) CrossRefGoogle Scholar
  14. 14.
    Cruz-Cabeza AJ, Groom CR (2011) Cryst Eng Comm 13:93–98CrossRefGoogle Scholar
  15. 15.
    Kubicki M (2004) Acta Crystallogr B 60:191–196CrossRefGoogle Scholar
  16. 16.
    Song J, Mishima M, Rappoport Z (2007) Org Lett 9:4307–4310CrossRefGoogle Scholar
  17. 17.
    Wu ZH, Ma JP, Wu XW, Huang RQ, Dong YB (2009) Acta Crystallogr C Cryst Struct Commun 65:o128–o130CrossRefGoogle Scholar
  18. 18.
    Enchev V, Angelova S, Rogojerov M, Monev V, Wawer I, Tkaczyk M, Kostova K (2011) J Phys Chem A 115:2026–2034CrossRefGoogle Scholar
  19. 19.
    Steiner T, Koellner G (1997) Chem Commun (13):1207–1208Google Scholar
  20. 20.
    Pizzala H, Carles M, Stone WEE, Thevand A (2000) J Mol Struct 526:261–268CrossRefGoogle Scholar
  21. 21.
    Bechtel F, Gaultier J, Hauw C (1973) Cryst Struct Commun 2:469–472Google Scholar
  22. 22.
    Bhatt PM, Desiraju GR (2007) Chem Commun (20):2057–2059Google Scholar
  23. 23.
    Enchev V, Abrahams I, Angelova S, Ivanova G (2005) J Mol Struct Theochem 719:169–175CrossRefGoogle Scholar
  24. 24.
    Rubčić M, Užarević K, Halasz I, Bregović N, Mališ M, Dilović I, Kokan Z, Stein RS, Dinnebier RE, Tomišić V (2012) Chem Eur J 18:5620–5631CrossRefGoogle Scholar
  25. 25.
    Chierotti MR, Ferrero L, Garino N, Gobetto R, Pellegrino L, Braga D, Grepioni F, Maini L (2010) Chem Eur J 16:4347–4358CrossRefGoogle Scholar
  26. 26.
    Schmidt MU, Brüning J, Glinnemann J, Hützler MW, Mörschel P, Ivashevskaya SN, Van De Streek J, Braga D, Maini L, Chierotti MR, Gobetto R (2011) Angew Chem 123:8070–8072CrossRefGoogle Scholar
  27. 27.
    Martin YC (2009) J Comput Aided Mol Des 23:693–704CrossRefGoogle Scholar
  28. 28.
    Faller B, Ertl P (2007) Adv Drug Deliv Rev 59:533–545CrossRefGoogle Scholar
  29. 29.
    Sala LF, Martell AE, Motekaitis RJ, Abbott H (1987) Inorg Chim Acta 135:123–127CrossRefGoogle Scholar
  30. 30.
    Lempert K, Nyitrai J, Sohár P, Zauer K (1964) Tetrahedron Lett 5:2679–2684CrossRefGoogle Scholar
  31. 31.
    Lempert K, Nyitrai J, Zauer K, Kálmán A, Argay G, Duisenberg AJM, Sohár P (1973) Tetrahedron 29:3565–3569CrossRefGoogle Scholar
  32. 32.
    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339–341CrossRefGoogle Scholar
  33. 33.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  34. 34.
    Gordon MS, Schmidt MW (2005) In: Frenking G, Kim KS, Scuseria GE, Dykstra CE (eds) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam, pp 1167–1189CrossRefGoogle Scholar
  35. 35.
    Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681CrossRefGoogle Scholar
  36. 36.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  37. 37.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) In: Gaussian, Inc., Wallingford, CTGoogle Scholar
  38. 38.
    Stuart BH (2004) Infrared spectroscopy: fundamentals and applications. Wiley Ltd., LondonCrossRefGoogle Scholar
  39. 39.
    Sheldrick G (2008) Acta Cryst A 64:112–122CrossRefGoogle Scholar
  40. 40.
    Barfield M, Fagerness P (1997) J Am Chem Soc 119:8699–8711CrossRefGoogle Scholar
  41. 41.
    Osmialowski B, Kolehmainen E, Dobosz R, Gawinecki R, Kauppinen R, Valkonen A, Koivukorpi J, Rissanen K (2010) J Phys Chem A 114:10421–10426CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Venelin Enchev
    • 1
  • Nadezhda Markova
    • 1
  • Marin Marinov
    • 2
  • Neyko Stoyanov
    • 3
  • Marin Rogojerov
    • 1
  • Angel Ugrinov
    • 4
  • Iwona Wawer
    • 5
  • Dariusz Maciej Pisklak
    • 5
  1. 1.Institute of Organic ChemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Faculty of Plant Protection and Agroecology, Department of General ChemistryAgricultural University – PlovdivPlovdivBulgaria
  3. 3.Department of Chemistry and Chemical TechnologyUniversity of Ruse – Razgrad BranchRazgradBulgaria
  4. 4.Department of Chemistry and BiochemistryNorth Dakota State UniversityFargoUSA
  5. 5.Faculty of PharmacyMedical University of WarsawWarsawPoland

Personalised recommendations