Advertisement

Structural Chemistry

, Volume 28, Issue 3, pp 735–748 | Cite as

A DFT study on electronic and optical properties of aspirin-functionalized B12N12 fullerene-like nanocluster

Original Research

Abstract

In this work, the interaction of an aspirin (AS) molecule with the external surface of a boron nitride fullerene-like nanocage (B12N12) is studied by means of density functional theory (DFT) calculations. Equilibrium geometry, electronic properties, adsorption energy and thermodynamic stability are identified for all of the adsorbed configurations. Four stable configurations are obtained for the interaction of AS molecule with the B12N12 nanocage, with adsorption energies in the range of −10.1 to −37.7 kcal/mol (at the M06-2X/6-31 + G** level). Our results clearly indicate that Al-doping of the B12N12 tends to increase the adsorption energy and thermodynamic stability of AS molecule over this nanocage. We further study the adsorption of AS over the B12N12 and B11N12Al in the presence of a protic (water) or aprotic (benzene) solvent. It is found that the calculated binding distances and adsorption energies by the PCM and CPCM solvent models are very similar, especially for the B12N12 complexes. According to time-dependent DFT calculations, the Al-doping can shift estimated λ max values toward longer wavelengths (redshift). Solvent effects also have an important influence on the calculated electronic absorption spectra of AS-B12N12 complexes.

Keywords

B12N12 DFT Adsorption Al-doping Optical properties 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of this work by the Mazandaran University of Medical Sciences “Professor’s Projects Funds”.

Supplementary material

11224_2016_858_MOESM1_ESM.doc (3.6 mb)
Supplementary material 1 (DOC 3659 kb)

References

  1. 1.
    Kreuter J (1994) Colloidal drug delivery systems. CRC Press, New YorkGoogle Scholar
  2. 2.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20CrossRefGoogle Scholar
  3. 3.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760CrossRefGoogle Scholar
  4. 4.
    Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16CrossRefGoogle Scholar
  5. 5.
    Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM (2008) Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev 34:592–602CrossRefGoogle Scholar
  6. 6.
    van Vlerken LE, Amiji MM (2006) Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv 3:205–216CrossRefGoogle Scholar
  7. 7.
    Basile L, Pignatello R, Passirani C (2012) Active targeting strategies for anticancer drug nanocarriers. Cur Drug Deliv 9:255–268CrossRefGoogle Scholar
  8. 8.
    Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126:187–204CrossRefGoogle Scholar
  9. 9.
    Thierry B (2009) Drug nanocarriers and functional nanoparticles: applications in cancer therapy. Cur Drug Deliv 6:391–403CrossRefGoogle Scholar
  10. 10.
    Yang X, Grailer JJ, Pilla S, Steeber DA, Gong S (2010) Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy. Bioconjug Chem 21:496–504CrossRefGoogle Scholar
  11. 11.
    Duverger E, Gharbi T, Delabrousse E, Picaud F (2014) Quantum study of boron nitride nanotubes functionalized with anticancer molecules. Phys Chem Chem Phys 16:18425–18432CrossRefGoogle Scholar
  12. 12.
    Farmanzadeh D, Ghazanfary S (2014) Interaction of vitamins A, B1, C, B3 and D with zigzag and armchair boron nitride nanotubes: a DFT study. C R Chim 17:985–993CrossRefGoogle Scholar
  13. 13.
    El Khalifi M, Duverger E, Boulahdour H, Picaud F (2015) Theoretical study of the interaction between carbon nanotubes and carboplatin anticancer molecules. Anal Methods 7:10145–10150CrossRefGoogle Scholar
  14. 14.
    Saikia N, Deka RC (2013) Ab initio study on the noncovalent adsorption of camptothecin anticancer drug onto graphene, defect modified graphene and graphene oxide. J Comput Aided Mol Des 27:807–821CrossRefGoogle Scholar
  15. 15.
    Saikia N, Pati SK, Deka RC (2012) First principles calculation on the structure and electronic properties of BNNTs functionalized with isoniazid drug molecule. Appl Nanosci 2:389–400CrossRefGoogle Scholar
  16. 16.
    Kraszewski S, Duverger E, Ramseyer C, Picaud F (2013) Theoretical study of amino derivatives and anticancer platinum drug grafted on various carbon nanostructures. J Chem Phys 139:174704CrossRefGoogle Scholar
  17. 17.
    Esrafili MD, Nurazar R (2014) A DFT study on the possibility of using boron nitride nanotubes as a dehydrogenation catalyst for methanol. Appl Surf Sci 314:90–96CrossRefGoogle Scholar
  18. 18.
    Esrafili MD (2013) Nitrogen-doped (6, 0) carbon nanotubes: a comparative DFT study based on surface reactivity descriptors. Comput Theor Chem 1015:1–7CrossRefGoogle Scholar
  19. 19.
    Beheshtian J, Behzadi H, Esrafili MD, Shirvani BB, Hadipour NL (2010) A computational study of water adsorption on boron nitride nanotube. Struct Chem 21:903–908CrossRefGoogle Scholar
  20. 20.
    Zhu YC, Bando Y, Yin LW, Golberg D (2004) Hollow boron nitride (BN) nanocages and BN-nanocage-encapsulated nanocrystals. Chem Eur J 10:3667–3672CrossRefGoogle Scholar
  21. 21.
    Ganji M, Yazdani H, Mirnejad A (2010) B36N36 fullerene-like nanocages: a novel material for drug delivery. Phys E 42:2184–2189CrossRefGoogle Scholar
  22. 22.
    Beheshtian J, Peyghan AA, Bagheri Z, Kamfiroozi M (2012) Interaction of small molecules (NO, H2, N2, and CH4) with BN nanocluster surface. Struct Chem 23:1567–1572CrossRefGoogle Scholar
  23. 23.
    Baei MT, Bagheri Z, Peyghan AA (2013) Transition metal atom adsorptions on a boron nitride nanocage. Struct Chem 24:1039–1044CrossRefGoogle Scholar
  24. 24.
    Beheshtian J, Peyghan AA, Bagheri Z (2013) Arsenic interactions with a fullerene-like BN cage in the vacuum and aqueous phase. J Mol Model 19:833–837CrossRefGoogle Scholar
  25. 25.
    Baei MT, Taghartapeh MR, Lemeski ET, Soltani A (2014) A computational study of adenine, uracil, and cytosine adsorption upon AlN and BN nano-cages. Phys B 444:6–13CrossRefGoogle Scholar
  26. 26.
    Weng Q, Wang B, Wang X, Hanagata N, Li X, Liu D, Wang X, Jiang X, Bando Y, Golberg D (2014) Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACS Nano 8:6123–6130CrossRefGoogle Scholar
  27. 27.
    Wu Q, Hu Z, Wang X, Lu Y, Chen X, Xu H, Chen Y (2003) Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. J Am Chem Soc 125:10176–10177CrossRefGoogle Scholar
  28. 28.
    Zhao M, Xia Y, Zhang D, Mei L (2003) Stability and electronic structure of AlN nanotubes. Phys Rev B 68:235415CrossRefGoogle Scholar
  29. 29.
    Wu R, Liu L, Peng G, Feng Y (2005) Magnetism in BN nanotubes induced by carbon doping. Appl Phys Lett 86:122510CrossRefGoogle Scholar
  30. 30.
    Anota EC, Cocoletzi GH, Ramírez JS (2013) Armchair BN nanotubes—levothyroxine interactions: a molecular study. J Mol Model 19:4991–4996CrossRefGoogle Scholar
  31. 31.
    Batista RJ, Mazzoni MS, Chacham H (2007) Boron nitride fullerene B36N36 doped with transition metal atoms: first-principles calculations. Phys Rev B 75:035417CrossRefGoogle Scholar
  32. 32.
    Terrones M, Romo-Herrera JM, Cruz-Silva E, López-Urías F, Muñoz-Sandoval E, Velázquez-Salazar JJ, Terrones H, Bando Y, Golberg D (2007) Pure and doped boron nitride nanotubes. Mater Today 10:30–38CrossRefGoogle Scholar
  33. 33.
    Cho YJ, Kim CH, Kim HS, Park J, Choi HC, Shin H-J, Gao G, Kang HS (2008) Electronic structure of Si-doped BN nanotubes using X-ray photoelectron spectroscopy and first-principles calculation. Chem Mater 21:136–143CrossRefGoogle Scholar
  34. 34.
    Peyghan AA, Noei M, Yourdkhani S (2013) Al-doped graphene-like BN nanosheet as a sensor for para-nitrophenol: DFT study. Superlattice Microst 59:115–122CrossRefGoogle Scholar
  35. 35.
    Soltani A, Baei MT, Lemeski ET, Kaveh S, Balakheyli H (2015) A DFT study of 5-fluorouracil adsorption on the pure and doped BN nanotubes. J Phys Chem Solids 86:57–64CrossRefGoogle Scholar
  36. 36.
    Oku T, Nishiwaki A, Narita I (2004) Formation and atomic structure of B 12 N 12 nanocage clusters studied by mass spectrometry and cluster calculation. Sci Tech Adv Mater 5:635–638CrossRefGoogle Scholar
  37. 37.
    Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012) A comparative study on the B12N12, Al12N12, B12P12 and Al12P12 fullerene-like cages. J Mol Model 18:2653–2658CrossRefGoogle Scholar
  38. 38.
    Bahrami A, Seidi S, Baheri T, Aghamohammadi M (2013) A first-principles study on the adsorption behavior of amphetamine on pristine, P-and Al-doped B12N12 nano-cages. Superlattice Microst 64:265–273CrossRefGoogle Scholar
  39. 39.
    Esrafili MD, Nurazar R (2014) A density functional theory study on the adsorption and decomposition of methanol on B12N12 fullerene-like nanocage. Superlattice Microst 67:54–60CrossRefGoogle Scholar
  40. 40.
    Mirzaei M, Nouri A (2010) The Al-doped BN nanotubes: a DFT study. J Mol Struct: THEOCHEM 942:83–87CrossRefGoogle Scholar
  41. 41.
    Shakerzadeh E, Noorizadeh S (2014) A first principles study of pristine and Al-doped boron nitride nanotubes interacting with platinum-based anticancer drugs. Phys E 57:47–55CrossRefGoogle Scholar
  42. 42.
    Esrafili MD, Nematollahi P, Nurazar R (2016) A comparative study of the CO oxidation reaction over pristine and C-doped boron nitride fullerene. RSC Adv 6:17172–17178CrossRefGoogle Scholar
  43. 43.
    Esrafili MD, Behzadi H (2013) A DFT study on carbon-doping at different sites of (8, 0) boron nitride nanotube. Struct Chem 24:573–581CrossRefGoogle Scholar
  44. 44.
    Martindale W, Sweetman SC (1999) Martindale: the complete drug reference. Pharmaceutical Press, LondonGoogle Scholar
  45. 45.
    Lewis HD Jr, Davis JW, Archibald DG, Steinke WE, Smitherman TC, Doherty JE III, Schnaper HW, LeWinter MM, Linares E, Pouget JM (1983) Protective effects of aspirin against acute myocardial infarction and death in men with unstable angina: results of a Veterans Administration Cooperative Study. N Engl J Med 309:396–403CrossRefGoogle Scholar
  46. 46.
    Carstensen J, Attarchi F, Hou XP (1985) Decomposition of aspirin in the solid state in the presence of limited amounts of moisture. J Pharm Sci 74:741–745CrossRefGoogle Scholar
  47. 47.
    Abbasi A, Nadimi E, Plänitz P, Radehaus C (2009) Density functional study of the adsorption of aspirin on the hydroxylated (001) α-quartz surface. Surf Sci 603:2502–2506CrossRefGoogle Scholar
  48. 48.
    Mphahlele K, Onyango MS, Mhlanga SD (2015) Adsorption of aspirin and paracetamol from aqueous solution using Fe/N-CNT/β-cyclodextrin nanocomopsites synthesized via a benign microwave assisted method. J Environ Chem Eng 3:2619–2630CrossRefGoogle Scholar
  49. 49.
    Al-Khateeb LA, Almotiry S, Salam MA (2014) Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chem Eng J 248:191–199CrossRefGoogle Scholar
  50. 50.
    Patil SM, Sataraddi SR, Bagoji AM, Pathan RM, Nandibewoor ST (2014) Electrochemical behavior of graphene-based sensors on the redox mechanism of aspirin. Electroanalysis 26:831–839CrossRefGoogle Scholar
  51. 51.
    Sanghavi BJ, Srivastava AK (2010) Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim Acta 55:8638–8648CrossRefGoogle Scholar
  52. 52.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, in, Gaussian, Inc., Wallingford, CT, USAGoogle Scholar
  53. 53.
    Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132:114110CrossRefGoogle Scholar
  54. 54.
    Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001CrossRefGoogle Scholar
  55. 55.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  56. 56.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  57. 57.
    Wang H (2010) A density functional investigation of fluorinated B12N12 clusters. Chin J Chem 28:1897–1901CrossRefGoogle Scholar
  58. 58.
    Li J, He T, Yang G (2012) An all-purpose building block: B12N12 fullerene. Nanoscale 4:1665–1670CrossRefGoogle Scholar
  59. 59.
    Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2011) Toxic CO detection by B12N12 nanocluster. Microelectr J 42:1400–1403CrossRefGoogle Scholar
  60. 60.
    Yourdkhani S, Korona T, Hadipour NL (2015) Structure and Energetics of Complexes of B12N12 with Hydrogen Halides-SAPT (DFT) and MP2 Study. J Phys Chem A 19:6446–6467CrossRefGoogle Scholar
  61. 61.
    Wiberg KB, Rablen PR (1993) Comparison of atomic charges derived via different procedures. J Comput Chem 14:1504–1518CrossRefGoogle Scholar
  62. 62.
    Nematollahi P, Esrafili MD (2016) A DFT study on the N2O reduction by CO molecule over silicon carbide nanotubes and nanosheets. RSC Adv 6:59091–59099CrossRefGoogle Scholar
  63. 63.
    Esrafili MD, Nurazar R (2014) Potential of C-doped boron nitride fullerene as a catalyst for methanol dehydrogenation. Comput Mater Sci 92:172–177CrossRefGoogle Scholar
  64. 64.
    Zhao F, Wang Y, Zhu M, Kang L (2015) C-doped boron nitride fullerene as a novel catalyst for acetylene hydrochlorination: a DFT study. RSC Adv 5:56348–56355CrossRefGoogle Scholar
  65. 65.
    Van Regemorter T, Guillaume M, Sini G, Sears JS, Geskin V, Brédas J-L, Beljonne D, Cornil J (2012) Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces. Theor Chem Acc 131:1–8Google Scholar
  66. 66.
    Shakerzadeh E, Barazesh N, Talebi SZ (2014) A comparative theoretical study on the structural, electronic and nonlinear optical features of B12N12 and Al12N12 nanoclusters with the groups III, IV and V dopants. Superlattice Microst 76:264–276CrossRefGoogle Scholar
  67. 67.
    Scheiner S, Kar T (2005) Effect of solvent upon CH…O hydrogenbonds with implications for protein folding. J Phys Chem B 109:3681–3689CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Esmail Vessally
    • 1
  • Mehdi D. Esrafili
    • 2
  • Roghaye Nurazar
    • 2
  • Parisa Nematollahi
    • 2
  • Ahmadreza Bekhradnia
    • 3
  1. 1.Department of ChemistryPayame Noor UniversityTehranIran
  2. 2.Laboratory of Theoretical Chemistry, Department of ChemistryUniversity of MaraghehMaraghehIran
  3. 3.Pharmaceutical Sciences Research Center, Department of Medicinal ChemistryMazandaran University of Medical SciencesSariIran

Personalised recommendations