Structural Chemistry

, Volume 28, Issue 3, pp 749–756 | Cite as

Effect of the species and number of heteroatom on the interaction energy and charge transfer between crown ether and alkali metal ions

  • Gang Sun
  • Xi-Xin Duan
  • Xiang-Shuai Liu
  • E. Lei
  • Chun-Guang Liu
Original Research
  • 121 Downloads

Abstract

Crown ether can bind the alkali metal ions, and the binding is related to numerous factors. In present work, we investigated the effect of the species and number of heteroatom on the interaction energy and charge transfer between crown ether and alkali metal ions in the three complexes (12C4O-Li+, 15C5O-Na+ and 18C6O-K+) using density functional method. Our results show that the N- or S-substitution is more favorable to the enhancement of charge transfer between the alkali metal ions and crown ethers than P-substitution; furthermore, the interaction energy of N- or S-substitution is also higher than that of P-substitution. The 12C4O has strongest affinity for Li+ in the three complexes from the perspective of the variation of the species and the number of heteroatom. Thus, take 12C4O for example, it is concluded that the number of N-substitution has slight influence on the interaction energy; however, as the number of P- or S-substitutions increases, the interaction energy values decrease sharply.

Keywords

Crown ether Alkali metal ions Interaction energy Charge transfer 

Notes

Acknowledgments

The authors really appreciate all financial support from Nature Science Foundation of China (NSFC) (21401007) and the “12th Five-Year Plan” Science and Technology Research Projects of the Education Department of Jilin Province (2014) (503#).

References

  1. 1.
    Ju XJ, Liu L, Xie R, Niu CH, Chu LY (2009) Polymer 50:922–929CrossRefGoogle Scholar
  2. 2.
    Horwitz EP, Dietz ML, Fisher DE (1991) Solvent Extr Ion Exch 9:1–25CrossRefGoogle Scholar
  3. 3.
    Liu C, Walter D, Neuhauser D, Baer R (2003) J Am Chem Soc 125:13936–13937CrossRefGoogle Scholar
  4. 4.
    Pedersen CJ (1967) J Am Chem Soc 89:2495–2496CrossRefGoogle Scholar
  5. 5.
    Pedersen CJ (1967) J Am Chem Soc 89:7017–7036CrossRefGoogle Scholar
  6. 6.
    Izatt RM (2007) Chem Soc Rev 36:143–147CrossRefGoogle Scholar
  7. 7.
    Pedersen CJ (1988) Angew Chem Int Edit 27:1021–1027CrossRefGoogle Scholar
  8. 8.
    Cram DJ (1988) Angew Chem Int Edit 27:1009–1020CrossRefGoogle Scholar
  9. 9.
    Lehn JM (1988) Angew Chem Int Edit 27:89–112CrossRefGoogle Scholar
  10. 10.
    Pedersen CJ, Frensdorff HK (1972) Angew Chem Int Edit 11:16–25CrossRefGoogle Scholar
  11. 11.
    Izatt RM, Nelson DP, Rytting JH, Haymore BL, Christensen JJ (1971) J Am Chem Soc 93:1619–1623CrossRefGoogle Scholar
  12. 12.
    Izatt RM, Terry RE, Nelson DP, Chan Y, Eatough DJ, Bradshaw JS, Hansen LD, Christensen JJ (1976) J Am Chem Soc 98:7626–7630CrossRefGoogle Scholar
  13. 13.
    Alexander V (1995) Chem Rev 95:273–342CrossRefGoogle Scholar
  14. 14.
    McDowell WJ, Case GN, McDonough JA, Bartsch RA (1992) Anal Chem 64:3013–3017CrossRefGoogle Scholar
  15. 15.
    Behjatmanesh-Ardakani R (2013) Struct Chem 25:919–929CrossRefGoogle Scholar
  16. 16.
    Glendening ED, Feller D, Thompson MA (1994) J Am Chem Soc 116:10657–10669CrossRefGoogle Scholar
  17. 17.
    Lamb JD, Izatt RM, Swain CS, Christensen JJ (1980) J Am Chem Soc 102:475–479CrossRefGoogle Scholar
  18. 18.
    Frensdorff HK (1971) J Am Chem Soc 93:600–606CrossRefGoogle Scholar
  19. 19.
    Michaux G, Reisse J (1982) J Am Chem Soc 104:6895–6899CrossRefGoogle Scholar
  20. 20.
    Wu G, Jiang W, Lamb JD, Bradshaw JS, Izatt RM (1991) J Am Chem Soc 113:6538–6541CrossRefGoogle Scholar
  21. 21.
    Schmidt E, Popov AI (1983) J Am Chem Soc 105:1873–1878CrossRefGoogle Scholar
  22. 22.
    Liesegang GW, Farrow MM, Arce Vazquez F, Purdie N, Eyring EM (1977) J Am Chem Soc 99:3240–3243CrossRefGoogle Scholar
  23. 23.
    Gokel GW, Goli DM, Minganti C, Echegoyen L (1983) J Am Chem Soc 105:6786–6788CrossRefGoogle Scholar
  24. 24.
    More MB, Ray D, Armentrout PB (1999) J Am Chem Soc 121:417–423CrossRefGoogle Scholar
  25. 25.
    Chu IH, Zhang H, Dearden DV (1993) J Am Chem Soc 115:5736–5744CrossRefGoogle Scholar
  26. 26.
    Anderson JD, Paulsen ES, Dearden DV (2003) Int J Mass Spectrom 227:63–76CrossRefGoogle Scholar
  27. 27.
    Cram DJ, Ho SP (1986) J Am Chem Soc 108:2998–3005CrossRefGoogle Scholar
  28. 28.
    Armentrout PB, Austin CA, Rodgers MT (2014) J Phys Chem A 118:8088–8097CrossRefGoogle Scholar
  29. 29.
    Izatt RM (1974) Chem Rev 74:351–384CrossRefGoogle Scholar
  30. 30.
    Hancock RD, Martell AE (1989) Chem Rev 89:1875–1914CrossRefGoogle Scholar
  31. 31.
    Gokel GW (1992) Chem Soc Rev 21:39–47CrossRefGoogle Scholar
  32. 32.
    Šumanovac Ramljak T, Despotović I, Bertoša B, Mlinarić-Majerski K (2013) Tetrahedron 69:10610–10620CrossRefGoogle Scholar
  33. 33.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  34. 34.
    Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89:2193–2218CrossRefGoogle Scholar
  35. 35.
    Petersson GA, Al-Laham MA (1991) J Chem Phys 94:6081–6090CrossRefGoogle Scholar
  36. 36.
    Becke D (1998) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  37. 37.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  38. 38.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206CrossRefGoogle Scholar
  39. 39.
    Becke D (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  41. 41.
    Becke AD (1993) J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  42. 42.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  43. 43.
    Sumathi R, Peyerimhoff SD, Sengupta D (1999) J Phys Chem A 103:772–778CrossRefGoogle Scholar
  44. 44.
    Dapprich S, Frenking G (1995) J Phys Chem 99:9352–9362CrossRefGoogle Scholar
  45. 45.
    Gorelsky SI, Ghosh S, Solomon EI (2006) J Am Chem Soc 128:278–290CrossRefGoogle Scholar
  46. 46.
    Lu T, Chen F (2012) J Comput Chem 33:580–592CrossRefGoogle Scholar
  47. 47.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyenga SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford, CTGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Gang Sun
    • 1
  • Xi-Xin Duan
    • 1
  • Xiang-Shuai Liu
    • 1
  • E. Lei
    • 1
  • Chun-Guang Liu
    • 2
  1. 1.Chemistry and Biology AcademyBeihua UniversityJilinChina
  2. 2.College of Chemical EngineeringNortheast Dianli UniversityJilinChina

Personalised recommendations