Skip to main content
Log in

Supramolecular solid-state structure, potential energy surfaces and evaluation of antiproliferative effect of 2-benzothiazolylhydrazone derivatives in vitro

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The in situ condensation reaction of 2-hydrazinobenzothiazole with salicylaldehyde, 3,4-dihydroxybenzaldehyde, 2,4-dihydroxybenzaldehyde, 2,5-dihydroxybenzaldehyde, 2,3-dihydroxybenzaldehyde, 2-hydroxy-1-naphthaldehyde, 2-methoxy-1-naphthaldehyde, 4-methoxy-1-naphthaldehyde and 6-methoxy-2-naphthaldehyde produced 9 hydrazone Schiff bases (L1–L9, respectively) which were identified and characterized by elemental analysis, IR and NMR spectroscopy. The crystal and molecular structures of four Schiff bases (L1, L7–L9) have been determined by the single-crystal X-ray diffraction method confirming the imino form of L1 and the amino tautomeric form of L7–L9 compounds. Molecular structure analysis also confirmed that reported compounds are E-isomers relative to exo C = N imino bond. The Nhydrazino–H group of amino tautomers forms Nhydrazino–H···Nthiazolyl intermolecular hydrogen bonds shaping molecules into R 22 (8) rings, while imino tautomer of L1 forms C(4) infinite helical chains via Nthiazolyl–H···Nhydrazino type of intermolecular hydrogen bond. The methoxy group (L7–L9) further shaped these primary supramolecular synthons into different supramolecular arrangements via C–H···O, C–H···N and C–H···S intermolecular hydrogen bonds. The role of aryl substituents in the shaping and stabilization of supramolecular architectures of L1, L7–L9 is supported by quantum chemical calculations. Strong antiproliferative effects on tumor cells and cytotoxic effects on fibroblasts are shown for all ligands L1–L9 with exception of L6 and L7 that had no effect on fibroblast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mortimer CG, Wells G, Crochard JP, Stone EL, Bradshaw TD, Stevens MFG, Westwell AD (2006) J Med Chem 49:179–185

    Article  CAS  Google Scholar 

  2. Al-Tel TH, Al-Qawasmeh RA, Zaarour R (2011) Eur J Med Chem 46:1874–1881

    Article  CAS  Google Scholar 

  3. Ćaleta I, Kralj M, Marjanović M, Bertosa B, Tomić S, Pavlović G, Pavelić K, Karminski-Zamola G (2009) J Med Chem 52:1744–1756

    Article  Google Scholar 

  4. Pattan SR, Suresh C, Pujar VD, Reddy VVK, Rasal VP, Koti BC (2005) Indian J Chem 44:2404–2408

    Google Scholar 

  5. Siddiqui N, Pandeya SN, Khau SA, Stables J, Rana A, Alam M, Arshad MF, Bhat MA (2007) Bioorg Med Chem Lett 17:255–259

    Article  CAS  Google Scholar 

  6. Gurupadayya BM, Gopal M, Padmashali B, Vaidya VP (2005) Ind J Heterocycl Chem 15:169–172

    CAS  Google Scholar 

  7. Pavlović G, Racané L, Čičak H, Tralić-Kulenović V (2009) Dyes Pigments 83:354–362

    Article  Google Scholar 

  8. Allen FH (2002) Acta Crystallogr B58:380–388

    Article  CAS  Google Scholar 

  9. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) Acta Crystallogr B72:171–179

    Google Scholar 

  10. Lindgren EB, Yoneda JD, Leal KZ, Nogueira AF, Vasconcelos TRA, Wardell JL, Wardell AMV (2013) J Mol Struct 1036:19–27

    Article  CAS  Google Scholar 

  11. Nogueira AF, Vasconcelos TRA, Wardell JL, Wardell SMSV (2011) Z Kristallogr 226:846–860

    Article  CAS  Google Scholar 

  12. Vanucci-Bacqué C, Carayon C, Bernis C, Camare V, Nègre-Salvayre A, Bedos-Belval F, Baltas M (2014) Bioorg Med Chem 22:4269–4276

    Article  Google Scholar 

  13. Patil SA, Weng CM, Huang PC, Hong FE (2009) Tetrahedron 65:2889–2897

    Article  CAS  Google Scholar 

  14. Lindgren EB, de Brito MA, Vasconselos TRA, de Morales MO, Montenegro RC, Yoneda JD, Leal KZ (2014) Eur J Med Chem 86:12–16

    Article  CAS  Google Scholar 

  15. Girish SR, Revankar VK, Mahale VB (1996) Transit Met Chem 21:401–405

    Article  CAS  Google Scholar 

  16. X’Pert Sofware Suite, Version 1.3e, Panalytical B.V., Almelo, The Netherlands, 2001

  17. Vreshch V (2011) J Appl Crystallogr 44:219–220

    Article  CAS  Google Scholar 

  18. Oxford Diffraction Ltd., Xcalibur CCD system, CrysAlis Software system Versions 1.171.37.35. Abingdon, Oxfordshire, England, 2008

  19. Sheldrick GM (2008) Acta Crystallogr Sect A64:112–122

    Article  Google Scholar 

  20. Farrugia LJ (1999) J Appl Crystallogr 32:837–838

    Article  CAS  Google Scholar 

  21. Spek L (2003) J Appl Crystallogr 36:7–13

    Article  CAS  Google Scholar 

  22. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) J Appl Crystallogr 41:466–470

    Article  CAS  Google Scholar 

  23. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  24. Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789

    Article  Google Scholar 

  25. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  26. Hrenar T (2014) qcc, Quantum Chemistry Code, rev. 0.68

  27. Primožič I, Hrenar T, Baumann K, Krišto L, Križić I, Tomić S (2014) Croat Chem Acta 87:155–162

    Google Scholar 

  28. Hrenar T, moonee, Code for manipulation and analysis of multi- and univariate data, rev. 0.6826, 2014

  29. Gaussian 09, Revision E.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc., Wallingford, CT. http://www.gaussian.com/g_tech/g_ur/m_citation.htm

  30. Gvozdjakova A, Ivanovičova H (1986) Chem Papers 40:797–800

    CAS  Google Scholar 

  31. Easmon J, Heinisch G, Holzer W (1989) Heterocycles 29:1399–1408

    Article  CAS  Google Scholar 

  32. Easmon J, Puerstinger G, Roth T, Fiebig HH, Jenny M, Jaeger W, Heinisch G, Hofmann J (2001) Int J Cancer 94:89–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Krešimir Molčanov, PhD, Division of Physical Chemistry, Laboratory for chemical and biological crystallography, Ruđer Bošković Institute, Zagreb, Croatia, for X-ray single-crystal diffraction data collection for compound 8. We greatly appreciate support of University of Rijeka research Grant No. 13.11.1.1.11 and access to equipment in possession of University of Rijeka within the project “Research Infrastructure for Campus-based Laboratories at University of Rijeka”, financed by European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Pavlović.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11224_2016_856_MOESM1_ESM.docx

Electronic supplementary information (ESI) is available and it contains: elemental analysis (Table S2), spectral data (Figs. S1–S27), structural formulas of L1‒L9 with abbreviated atoms that define torsional coordinates (Fig. S28) and XRPD patterns (Figs. S29, S30). Full details of the crystal structure determinations in cif format are available in the online version, at doi (to be inserted) and have also been deposited with the Cambridge Crystallographic Data Centre with deposition numbers 1494759 (L1), 1494760 (L7), 1494761 (L8) and 1494762 (L9). Copies of these last can be obtained free of charge on written application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44 1223 336033); on request by email to deposit@ccdc.cam.ac.uk or by access to http://www.ccdc.cam.ac.uk. Supplementary data associated with this article can be found, in the online version, at (to be inserted) (DOCX 2422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katava, R., Pavelić, S.K., Harej, A. et al. Supramolecular solid-state structure, potential energy surfaces and evaluation of antiproliferative effect of 2-benzothiazolylhydrazone derivatives in vitro. Struct Chem 28, 709–721 (2017). https://doi.org/10.1007/s11224-016-0856-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0856-0

Keywords

Navigation