Advertisement

Structural Chemistry

, Volume 28, Issue 3, pp 723–733 | Cite as

Single crystal X-ray structural features of aromatic compounds having a pentafluorosulfuranyl (SF5) functional group

  • Junyi Du
  • Guoxiong Hua
  • Peter Beier
  • Alexandra M. Z. Slawin
  • J. Derek Woollins
Original Research

Abstract

Nine pentafluorosulfuranyl (SF5)-containing aromatic compounds have been characterized crystallographically. The SF5 group has an umbrella geometry, and the sulfur atom in the SF5 group is in an approximately octahedral coordination environment. All S–F bond lengths [1.572(3)–1.618(3) Å] are very similar, and the C–S–Fax bond angles [178.94(14)–180°] are very close to each other. The angle of two adjacent Feq is approximately 90°. The intramolecular and intermolecular interactions such as Caryl–H···Feq, Caryl–H···O/N/F/Cl interactions, and π-stacking interactions play a very important role in their three-dimensional packing frameworks.

Keywords

Pentafluorosulfuranyl (SF5) group Aromatic compounds Single crystal X-ray structure Intramolecular interactions Intermolecular interactions 

Notes

Acknowledgments

We are grateful to the University of St Andrews for financial support.

Supplementary material

11224_2016_854_MOESM1_ESM.docx (65 kb)
Supplementary material 1 (DOCX 65 kb)

References

  1. 1.
    Swarts F (1896) Bull Soc Chim Belg 15:1134–1135Google Scholar
  2. 2.
    Banks RE, Homood E (1979) Organofluorine chemicals and their industry applications. Wiley, LondonGoogle Scholar
  3. 3.
    Simons JH, Electrochem J Chem Soc. 95:47-66Google Scholar
  4. 4.
    Marais JSC, Vet J (1943) Sci Anim Ind 18:203–206Google Scholar
  5. 5.
    Heidelerger C, Chaudhuri NK, Danneberg P, Mooren D, Griesbach L, Duschinsky R, Schnitzer RJ, Pleven E, Pleven E, Scheiner J (1957) Nature 79:663–666CrossRefGoogle Scholar
  6. 6.
    Purser S, Moore PR, Swallow S, Gouverneur V (2008) Chem Soc Rev 37:320–330CrossRefGoogle Scholar
  7. 7.
    Muller K, Faeh C, Diederich F (2007) Science 317:1881–1886CrossRefGoogle Scholar
  8. 8.
    Furuya T, Kamlet AS, Ritter T (2011) Nature 473:470–477CrossRefGoogle Scholar
  9. 9.
    Allemann O, Duttwyler S, Romanato P, Baldridge KK, Siegel JS (2011) Science 332:574–577CrossRefGoogle Scholar
  10. 10.
    Lee E, Kamlet AS, Powers DC, Neumann CN, Boursalian GB, Furuya T, Choi DC, Hooker JM, Ritter T (2011) Science 334:639–642CrossRefGoogle Scholar
  11. 11.
    Choi J, Wang DY, Kundu S, Chliy Y, Emge TJ, Krogh-Jespersen K, Goldman A (2011) Science 332:1545–1548CrossRefGoogle Scholar
  12. 12.
    Rauniyar V, Lackner AD, Hamilton GL, Toste FD (2011) Science 334:1681–1684CrossRefGoogle Scholar
  13. 13.
    Schlueter JA, Geiser U, Wang HH, Kelly ME, Dudek JD, Williams JM, Naumann D, Roy T (1996) Mol Cryst Liq Cryst Sci Technol Sect Mol Cryst Liq Cryst 284:195–202CrossRefGoogle Scholar
  14. 14.
    Kirsch P, Bremer M, Taugerbeck A, Wallmichrath T (2001) Angew Chem Int Ed 40:1480–1484CrossRefGoogle Scholar
  15. 15.
    Winter R, Nixon PG, Terjeson RJ, Mohtasham J, Holcomb NR, Grainger DW, Graham D, Castner DG, Gard GL (2002) J Fluor Chem 115:107–113CrossRefGoogle Scholar
  16. 16.
    Smith JA, Distasio RA, Hannah NA, Winter RW, Weakley TJR, Gard GL, Rananavare SB (2004) J Phys Chem B 108:19940–19948CrossRefGoogle Scholar
  17. 17.
    Suzuki Y, Hagiwara T, Kawamura I, Okamura N, Kitazume T, Kakimoto M, Imai Y, Ouchi Y, Takezoe H, Fukuda A (2006) Liq Cryst 33:1344–1349Google Scholar
  18. 18.
    Li W, Chen G, Zhang S, Wang H, Yan D (2007) J Polym Sci Part A: Polym Chem 45:3550–3561CrossRefGoogle Scholar
  19. 19.
    Pastyrikova T, Iakobson G, Vida N, Pohl R, Beier P (2012) Eur J Org Chem 11:2123–2126CrossRefGoogle Scholar
  20. 20.
    Beier P, Pastyrikova T (2011) Tetrahedron Lett 52:4392–4394CrossRefGoogle Scholar
  21. 21.
    Beier P, Pastyrikova T (2011) J Org Chem 76:4781–4786CrossRefGoogle Scholar
  22. 22.
    Beier P, Pastyrikova T (2013) Beilstein J Org Chem 9:411–416CrossRefGoogle Scholar
  23. 23.
    Schinor B, Wibbeling B, Haufe G (2013) J Fluor Chem 155:102–109CrossRefGoogle Scholar
  24. 24.
    Ponomarenko MV, Lummer K, Fokin AA, Serguchev YA, Bassil BS, Roschenthaler G (2013) Org Biomol Chem 11:8103–8112CrossRefGoogle Scholar
  25. 25.
    Okazaki T, Laali KK, Bunge SD, Adas SK (2014) Eur J Org Chem 8:1630–1644CrossRefGoogle Scholar
  26. 26.
    Sheldrick GM (2008) Acta Crystallogr A 64:112–122CrossRefGoogle Scholar
  27. 27.
    Muller K, Faeh C, Diederich F (2007) Science 317:1881–1886CrossRefGoogle Scholar
  28. 28.
    Winter RW, Dodean R, Smith JA, Anilkumar R, Burton DJ, Gard GL (2005) J Fluorine Chem 126:1202–1214CrossRefGoogle Scholar
  29. 29.
    Wipf P, Mo T, Geib SJ, Caridha D, Dow GS, Gerena L, Roncal N, Milner EE (2009) Org Biomol Chem 7:4163–4165CrossRefGoogle Scholar
  30. 30.
    Berg C, Braun T, Laubenstein R, Braun B (2016) Chem Commun 52:3931–3934CrossRefGoogle Scholar
  31. 31.
    Zarantonello C, Guerrato A, Ugel E, Bertani R, Benetollo F, Milani R, Venzo A, Zaggia A (2007) J Fluor Chem 128:1449–1453CrossRefGoogle Scholar
  32. 32.
    Hua G, Du J, Slawin AMZ, Woollins JD (2014) J Org Chem 79:3876–3886CrossRefGoogle Scholar
  33. 33.
    Kirsch P, Bremer M, Heckmeier M, Tarumi K (1999) Angew Chem Int Ed 38:1989–1992CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Junyi Du
    • 1
  • Guoxiong Hua
    • 1
  • Peter Beier
    • 2
  • Alexandra M. Z. Slawin
    • 1
  • J. Derek Woollins
    • 1
  1. 1.EastChem School of ChemistryUniversity of St AndrewsFifeUK
  2. 2.The Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPraugeCzech Republic

Personalised recommendations