Structural Chemistry

, Volume 28, Issue 3, pp 675–686 | Cite as

A theoretical study on the efficiency and role of guanidines-based organic superbases on carbon dioxide utilization in quinazoline-2,4(1H, 3H)-diones synthesis

Original Research

Abstract

Superbases DBU, DBN, TMG and MTBD are efficient catalysts which have been used in the solvent-free conversion of carbon dioxide and 2-aminobenzonitrile to quinazoline-2,4(1H, 3H)-diones. For the final product, four tautomeric forms have been considered which the stability of the preferred tautomer has been studied by NBO analysis. In this research, two different mechanisms have been proposed for the catalytic behavior of the superbases which can act as a base or a nucleophile in the reaction. Theoretical studies show that two primary steps are the rate-determining step (RDS) of the mechanism. QTAIM analysis and local nucleophilicity index were used for investigation of the molecular aspects of the RDSs. Finally, it has been confirmed the basic role of the applied superbases is more important than nucleophilicity and DBU is the best candidate as an efficient catalyst for this reaction.

Keywords

Organic superbases Quinazoline-2,4(1H, 3H)-diones Carbon dioxide Catalyst 

Notes

Acknowledgments

Research Council of Ferdowsi University of Mashhad is gratefully acknowledged for the financial support of this project (Grant No 2/40883). Also, we hereby acknowledge that some parts of this computation were performed in the HPC center of Ferdowsi University of Mashhad.

Supplementary material

11224_2016_842_MOESM1_ESM.docx (136 kb)
Supplementary tables and Cartesian coordinates of the molecules. This material is available free of charge via… (DOCX 135 kb)

References

  1. 1.
    Zhu Y, Zhang S, Ye Y, Zhang X, Wang L, Zhu W, Cheng F, Tao F (2012) catalytic conversion of carbon dioxide to methane on ruthenium–cobalt bimetallic nanocatalysts and correlation between surface chemistry of catalysts under reaction conditions and catalytic performances. ACS Catal 2:2403–2408CrossRefGoogle Scholar
  2. 2.
    Kothandaraman J, Goeppert A, Czaun M, Prakash GS, Olah GA (2015) Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst. J Am Chem Soc 138:778–781CrossRefGoogle Scholar
  3. 3.
    Sarfraz S, Garcia-Esparza AT, Jedidi A, Cavallo L, Takanabe K (2016) Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal 6:2842–2851CrossRefGoogle Scholar
  4. 4.
    Lin J, Ding Z, Hou Y, Wang X (2013) Ionic liquid co-catalyzed artificial photosynthesis of CO. Sci Rep 3:1056 (5 pages) CrossRefGoogle Scholar
  5. 5.
    Liu Q, Wu L, Jackstell R, Beller M (2015) Using carbon dioxide as a building block in organic synthesis. Nat Commun 6:5933 (5915 pages) CrossRefGoogle Scholar
  6. 6.
    Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387CrossRefGoogle Scholar
  7. 7.
    Fontaine FG, Courtemanche MA, Légaré MA (2014) Transition-metal-free catalytic reduction of carbon dioxide. Chem Eur J 20:2990–2996CrossRefGoogle Scholar
  8. 8.
    Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 28:2975–2992CrossRefGoogle Scholar
  9. 9.
    Mömming CM, Otten E, Kehr G, Fröhlich R, Grimme S, Stephan DW, Erker G (2009) Reversible metal-free carbon dioxide binding by frustrated Lewis Pairs. Angew Chem Int Ed 48:6643–6646CrossRefGoogle Scholar
  10. 10.
    Zhou H, Zhang W-Z, Liu C-H, Qu J-P, Lu X-B (2008) CO2 adducts of N-heterocyclic carbenes: thermal stability and catalytic activity toward the coupling of CO2 with epoxides. J Org Chem 73:8039–8044CrossRefGoogle Scholar
  11. 11.
    Pérez ER, Santos RH, Gambardella MT, De Macedo LG, Rodrigues-Filho UP, Launay J-C, Franco DW (2004) Activation of carbon dioxide by bicyclic amidines. J Org Chem 69:8005–8011CrossRefGoogle Scholar
  12. 12.
    Voutchkova AM, Feliz M, Clot E, Eisenstein O, Crabtree RH (2007) Imidazolium carboxylates as versatile and selective N-heterocyclic carbene transfer agents: synthesis, mechanism, and applications. J Am Chem Soc 129:12834–12846CrossRefGoogle Scholar
  13. 13.
    Ashley AE, Thompson AL, O’Hare D (2009) Non-metal-mediated homogeneous hydrogenation of CO2 to CH3OH. Angew Chem Int Ed 48:9839–9843CrossRefGoogle Scholar
  14. 14.
    Fan M, Bai Z, Zhang Q, Ma C, Zhou X-D, Qiao J (2014) Aqueous CO2 reduction on morphology controlled CuxO nanocatalysts at low overpotential. RSC Adv 4:44583–44591CrossRefGoogle Scholar
  15. 15.
    Qi W, Xie K, Liu M, Wu G, Wang Y, Zhang Y, Wu Y (2014) Single-phase nickel-doped ceria cathode with in situ grown nickel nanocatalyst for direct high-temperature carbon dioxide electrolysis. RSC Adv 4:40494–40504CrossRefGoogle Scholar
  16. 16.
    Shi C, Chen Y, Liu H, Cui G, Ju L, Chen L (2016) Adsorption and gas-sensing characteristics of a stoichiometric α-Fe2O3 (0 0 1) nano thin film for carbon dioxide and carbon monoxide with and without pre-adsorbed O2. RSC Adv 6:3514–3525CrossRefGoogle Scholar
  17. 17.
    Tran TP, Ellsworth EL, Stier MA, Domagala JM, Showalter HH, Gracheck SJ, Shapiro MA, Joannides TE, Singh R (2004) Synthesis and structural–activity relationships of 3-hydroxyquinazoline-2, 4-dione antibacterial agents. Bioorg Med Chem Lett 14:4405–4409CrossRefGoogle Scholar
  18. 18.
    Hayao S, Havera HJ, Strycker WG, Leipzig T, Kulp RA, Hartzler HE (1965) New sedative and hypotensive 3-substituted 2, 4 (1H, 3H)-quinazolinediones. J Med Chem 8:807–811CrossRefGoogle Scholar
  19. 19.
    Kakuta H, Tanatani A, Nagasawa K, Hashimoto Y (2003) Specific nonpeptide inhibitors of puromycin-sensitive aminopeptidase with a 2, 4 (1H, 3H)-quinazolinedione skeleton. Chem Pharm Bull 51:1273–1282CrossRefGoogle Scholar
  20. 20.
    Russell RK, Press JB, Rampulla RA, McNally JJ, Falotico R, Keiser JA, Bright DA, Tobia A (1988) Thiophene systems. 9. Thienopyrimidinedione derivatives as potential antihypertensive agents. J Med Chem 31:1786–1793CrossRefGoogle Scholar
  21. 21.
    Patil YP, Tambade PJ, Jagtap SR, Bhanage BM (2008) Cesium carbonate catalyzed efficient synthesis of quinazoline-2, 4 (1 H, 3 H)-diones using carbon dioxide and 2-aminobenzonitriles. Green Chemistry Letters and Reviews 1:127–132CrossRefGoogle Scholar
  22. 22.
    Lu W, Ma J, Hu J, Song J, Zhang Z, Yang G, Han B (2014) Efficient synthesis of quinazoline-2, 4 (1 H, 3 H)-diones from CO2 using ionic liquids as a dual solvent–catalyst at atmospheric pressure. Green Chem 16:221–225CrossRefGoogle Scholar
  23. 23.
    Patil YP, Tambade PJ, Deshmukh KM, Bhanage BM (2009) Synthesis of quinazoline-2, 4 (1H, 3H)-diones from carbon dioxide and 2-aminobenzonitriles using [Bmim]OH as a homogeneous recyclable catalyst. Catal Today 148:355–360CrossRefGoogle Scholar
  24. 24.
    Patil YP, Tambade PJ, Parghi KD, Jayaram RV, Bhanage BM (2009) Synthesis of quinazoline-2, 4 (1H, 3H)-diones from carbon dioxide and 2-aminobenzonitriles using MgO/ZrO2 as a solid base catalyst. Catal Lett 133:201–208CrossRefGoogle Scholar
  25. 25.
    Lu W, Ma J, Hu J, Zhang Z, Wu C, Han B (2014) Choline hydroxide promoted chemical fixation of CO2 to quinazoline-2, 4(1 H, 3 H)-diones in water. RSC Adv 4:50993–50997CrossRefGoogle Scholar
  26. 26.
    Jiarong L, Xian C, Daxin S, Shuling M, Qing L, Qi Z, Jianhong T (2009) A new and facile synthesis of quinazoline-2, 4 (1 H, 3 H)-diones. Org Lett 11:1193–1196CrossRefGoogle Scholar
  27. 27.
    Nagai D, Endo T (2009) Synthesis of 1H-quinazoline-2, 4-diones from 2-aminobenzonitriles by fixation of carbon dioxide with amidine moiety supported polymer at atmospheric pressure. J Polym Sci, Part A: Polym Chem 47:653–657CrossRefGoogle Scholar
  28. 28.
    Leow D, Tan CH (2009) Chiral guanidine catalyzed enantioselective reactions. Chem Asian J 4:488–507CrossRefGoogle Scholar
  29. 29.
    Ishikawa T (2009) Superbases for organic synthesis: guanidines, amidines and phosphazenes and related organocatalysts. Wiley, New YorkCrossRefGoogle Scholar
  30. 30.
    Mizuno T, Okamoto N, Ito T, Miyata T (2000) Synthesis of 2, 4-dihydroxyquinazolines using carbon dioxide in the presence of DBU under mild conditions. Tetrahedron Lett 41:1051–1053CrossRefGoogle Scholar
  31. 31.
    Mizuno T, Okamoto N, Ito T, Miyata T (2000) Synthesis of quinazolines using carbon dioxide (or carbon monoxide with sulfur) under mild conditions. Heteroat Chem 11:428–433CrossRefGoogle Scholar
  32. 32.
    Gao J, He L-N, Miao C-X, Chanfreau S (2010) Chemical fixation of CO2: efficient synthesis of quinazoline-2, 4 (1H, 3H)-diones catalyzed by guanidines under solvent-free conditions. Tetrahedron 66:4063–4067CrossRefGoogle Scholar
  33. 33.
    Mercy M, de Leeuw NH, Bell RG (2016) Mechanisms of CO2 capture in ionic liquids: a computational perspective. Faraday Discuss. doi: 10.1039/C6FD00081A Google Scholar
  34. 34.
    Roshan KR, Palissery RA, Kathalikkattil AC, Babu R, Mathai G, Lee H-S, Park D-W (2016) A computational study of the mechanistic insights into base catalysed synthesis of cyclic carbonates from CO2: bicarbonate anion as an active species. Catal Sci Technol 6(11):3997–4004CrossRefGoogle Scholar
  35. 35.
    Fu X, Tan C-H (2011) Mechanistic considerations of guanidine-catalyzed reactions. Chem Commun 47:8210–8222CrossRefGoogle Scholar
  36. 36.
    Nicholls R, Kaufhold S, Nguyen BN (2014) Observation of guanidine–carbon dioxide complexation in solution and its role in the reaction of carbon dioxide and propargylamines. Catal Sci Technol 4:3458–3462CrossRefGoogle Scholar
  37. 37.
    Pereira FS, Ribeiro de Azevedo E, da Silva EF, Bonagamba TJ, da Silva Agostíni DL, Magalhaes A, Job AE, Gonzalez ERP (2008) Study of the carbon dioxide chemical fixation–activation by guanidines. Tetrahedron 64:10097–10106CrossRefGoogle Scholar
  38. 38.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) gaussian 09. Gaussian Inc., WallingfordGoogle Scholar
  39. 39.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  40. 40.
    Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56CrossRefGoogle Scholar
  41. 41.
    Fukui K (1970) Formulation of the reaction coordinate. J Phys Chem 74:4161–4163CrossRefGoogle Scholar
  42. 42.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  43. 43.
    Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78:4066–4073CrossRefGoogle Scholar
  44. 44.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  45. 45.
    Chaudret R, De Courcy B, Contreras-García J, Gloaguen E, Zehnacker-Rentien A, Mons M, Piquemal J-P (2014) Unraveling non-covalent interactions within flexible biomolecules: from electron density topology to gas phase spectroscopy. PCCP 16:9876–9891CrossRefGoogle Scholar
  46. 46.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  47. 47.
    Bader RF (1990) Atoms in molecules: a quantum theory, international series of monographs on chemistry 22. Oxford University Press, OxfordGoogle Scholar
  48. 48.
    Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density Comput Mater Sci 36:354–360Google Scholar
  49. 49.
    Bader R (2000) AIM 2000 program. McMaster University, HamiltonGoogle Scholar
  50. 50.
    Sabet-Sarvestani H, Eshghi H, Bakavoli M, Izadyar M, Rahimizadeh M (2014) Theoretical investigation of the chemoselectivity and synchronously pyrazole ring formation mechanism from ethoxymethylenemalononitrile and hydrazine hydrate in the gas and solvent phases: DFT, meta-GGA studies and NBO analysis. RSC Adv 4:43485–43495CrossRefGoogle Scholar
  51. 51.
    Glasovac Z, Pavošević F, Štrukil V, Eckert-Maksić M, Schlangen M, Kretschmer R (2013) Toward extension of the gas-phase basicity scale by novel pyridine containing guanidines. Int J Mass Spectrom 354:113–122CrossRefGoogle Scholar
  52. 52.
    Kaljurand I, Saame J, Rodima T, Koppel I, Koppel IA, Kögel JF, Jr Sundermeyer, Köhn U, Coles MP, Leito I (2016) Experimental basicities of phosphazene, guanidinophosphazene, and proton sponge superbases in the gas phase and solution. J Phys Chem A 120:2591–2604CrossRefGoogle Scholar
  53. 53.
    Domingo LR, Pérez P, Sáez JA (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv 3:1486–1494CrossRefGoogle Scholar
  54. 54.
    Domingo LR, Pérez P (2013) Global and local reactivity indices for electrophilic/nucleophilic free radicals. Org Biomol Chem 11:4350–4358CrossRefGoogle Scholar
  55. 55.
    Domingo LR (2014) A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv 4:32415–32428CrossRefGoogle Scholar
  56. 56.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesFerdowsi University of MashhadMashhadIran

Personalised recommendations