Structural Chemistry

, Volume 28, Issue 3, pp 687–695 | Cite as

The X···benzohydrazide complexes: the interplay between anion-π and H-bond interactions

Original Research

Abstract

The compounds containing the benzohydrazide (BH) nucleus have a variety of biological activities because of various noncovalent intermolecular interactions. The interplay between anion-π and H-bond interactions, which can affect the activity of compounds, has been investigated in ten substituted BH exposed to the chloride ion using the quantum mechanical calculations. The total interaction energy is separated into the anion-π (ΔE ) and H-bond (ΔE HB) contributions where both interactions are presented in the complexes. The electron-withdrawing substituents (EWSs) increase |ΔE | and decrease |ΔE HB|, while reversed changes are observed with the electron-donating substituents (EDSs). In addition, the total binding energy (ΔE) becomes more/less negative in the presence of EWSs/EDSs. The synergetic effects of mentioned interactions and substituent effects have also been investigated using the atoms in molecules (AIM), natural bond orbital (NBO) and molecular electrostatic potential (MEP) analyses. A good correlation is found between the energy data and the Hammett constants, the minimum of electrostatic potential (V min) and the results of population analyses.

Keywords

Benzohydrazide Anion-π interaction Hydrogen bonding Substituent effects Synergetic effect DFT calculation 

Supplementary material

11224_2016_839_MOESM1_ESM.docx (53 kb)
Supplementary material 1 (DOCX 52 kb)

References

  1. 1.
    Khan KM, Taha M, Rahim F, Fakhri MI, Jamil W, Khan M, Rasheed S, Karim A, Perveen S, Choudhary MI (2013) Acyl hydrazide Schiff bases: synthesis and antiglycation activity. J Pak Chem Soc 35:929–937Google Scholar
  2. 2.
    Khan KM, Rahim F, Ambreen N, Taha M, Khan M, Jahan H, Najeebullah Shaikh A, Iqbal S, Perveen S, Choudhary MI (2013) Synthesis of benzophenonehydrazone Schiff bases and their in vitro antiglycating activities. Med Chem 9:588–595CrossRefGoogle Scholar
  3. 3.
    Taha M, Naz H, Rasheed S, Ismail NH, Rahman AA, Yousuf S, Choudhary MI (2014) Synthesis of 4-methoxybenzoylhydrazones and evaluation of their antiglycation activity. Molecules 19:1286–1301CrossRefGoogle Scholar
  4. 4.
    Taha M, Ismail NH, Imran S, Khan KM (2014) 4-[5-(2-methoxyphenyl)-1,3,4-oxadiazol-2-yl]benzohydrazide. Molbank M826Google Scholar
  5. 5.
    Anouar E, Raweh S, Bayach I, Taha M, Baharudin MS, Meo FD, Hasan MH, Adam A, Ismail NH, Weber JF, Trouillas P (2013) Antioxidant properties of phenolic Schiff bases: structure activity relationship and mechanism of action. J Comput Aided Mol Des 27:951–964CrossRefGoogle Scholar
  6. 6.
    Taha M, Ismail NH, Jamil W, Yousuf S, Jaafar FM, Ali MI, Kashif SM, Hussain E (2013) Synthesis, evaluation of antioxidant activity and crystal structure of 2,4-dimethylbenzoylhydrazones. Molecules 18:10912–10929CrossRefGoogle Scholar
  7. 7.
    Khan KM, Shah Z, Ahmad VU, Khan M, Taha M, Ali S, Perveen S, Choudhary MI, Voelter W (2012) 2,4,6-trichlorophenyl hydrazine Schiff bases as DPPH radical and super oxide anion scavengers. Med Chem 8:452–461CrossRefGoogle Scholar
  8. 8.
    Taha M, Baharudin MS, Ismail NH, Khan KM, Jaafar FM, Siddiqui S, Choudhary MI (2013) Synthesis of 2-methoxybenzoylhydrazone and evaluation of their antileishmanial activity. Bioorg Med Chem Lett 23:3463–3466CrossRefGoogle Scholar
  9. 9.
    Imran S, Taha M, Ismail NH, Khan KM, Naz F, Hussain M, Tauseef S (2014) Synthesis of novel bisindolylmethane Schiff bases and their antibacterial activity. Molecules 19:11722–11740CrossRefGoogle Scholar
  10. 10.
    Sundriyal S, Sharma RK, Jain R (2006) Current advances in antifungal targets and drug development. Curr Med Chem 13:1321–1335CrossRefGoogle Scholar
  11. 11.
    Popp FD, Kirsch WJ (1961) Synthesis of potential anticancer agents. V. Schiff bases and related compounds. J Org Chem 26:3858–3860CrossRefGoogle Scholar
  12. 12.
    Jain JS, Srivastava RS, Aggarwal N, Sinha R (2007) Synthesis and evaluation of schiff bases for anticonvulsant and behavioral depressant properties. Cent Nerv Syst Agents Med Chem 7:200–204CrossRefGoogle Scholar
  13. 13.
    Taha M, Ismail NH, Lalani S, Fatmi MQ, Wahab A, Siddiqui S, Khan KM, Imran S, Choudhary MI (2015) Synthesis of novel inhibitors of a-glucosidase based on the benzothiazole skeleton containing benzohydrazide moiety and their molecular docking studies. Eur J Med Chem 92:387–400CrossRefGoogle Scholar
  14. 14.
    Ozkay Y, Tanah Y, Karaka H, Iskdag I (2010) Antimicrobial activity and a SAR study of some novel benzimidazole derivatives bearing hydrazone moiety. Eur J Med Chem 45:3293–3298CrossRefGoogle Scholar
  15. 15.
    Quiñonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A, Deyà PM (2002) Anion-π interactions: do they exist? Angew Chem Int Ed 41:3389–3392CrossRefGoogle Scholar
  16. 16.
    Mascal M, Armstrong A, Bartberger MD (2002) Anion-aromatic–π interactions: do they exist? Angew Chem Int Ed 41:3389–3392CrossRefGoogle Scholar
  17. 17.
    Alkorta I, Rozas I, Elguero J (2002) Interaction of anions with perfluoro aromatic compounds. J Am Chem Soc 124:8593–8598CrossRefGoogle Scholar
  18. 18.
    Allen F (2002) The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388CrossRefGoogle Scholar
  19. 19.
    Arjunan V, Ranib T, Mythilic CV, Mohand S (2011) Synthesis, FT-IR, FT-Raman, UV–visible, ab initio and DFT studies on benzohydrazide. Spectrochim Acta A 79:486–496CrossRefGoogle Scholar
  20. 20.
    Al-Saadi AA (2012) Conformational analysis and vibrational assignments of benzohydroxamic acid and benzohydrazide. J Mol Struct 1023:115–122CrossRefGoogle Scholar
  21. 21.
    Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  22. 22.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian Inc., WallingfordGoogle Scholar
  23. 23.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  24. 24.
    Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622CrossRefGoogle Scholar
  25. 25.
    Jr Dunning, Thom H (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  26. 26.
    Biegler KF, Schonbohm J, Bayles D (2001) AIM2000—a program to analyze and visualize atoms in molecules. J Comput Chem 22:545–559CrossRefGoogle Scholar
  27. 27.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wave function analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  28. 28.
    Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746CrossRefGoogle Scholar
  29. 29.
    Glendening ED, Reed AE, Carpenter JE, Weinhold F (1990) NBO version 3.1. Theoretical Chemistry Institute. University of Wisconsin, MadisonGoogle Scholar
  30. 30.
    Hammett LP (1935) Some relations between reaction rates and equilibrium constants. Chem Rev 17:125–136CrossRefGoogle Scholar
  31. 31.
    Cozzi F, Ponzini F, Annunziata R, Cinquini M, Siegel JS (1995) Polar interactions between stacked π systems in fluorinated 1,8-diarylnaphthalenes: importance of quadrupole moments in molecular recognition. Angew Chem Int E 34:1019–1020CrossRefGoogle Scholar
  32. 32.
    Hansch C, Leo A (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91:165–195CrossRefGoogle Scholar
  33. 33.
    Zhu W, Tan X, Shen J, Luo X, Cheng F, Mok PC, Ji R, Chen K, Jiang H (2003) Differentiation of cation−π bonding from cation−π intermolecular interactions: a quantum chemistry study using density-functional theory and morokuma decomposition methods. J Phys Chem A 107:2296–2303CrossRefGoogle Scholar
  34. 34.
    Lucas X, Estarellas C, Escudero D, Frontera A, Quinonero D, Deya PM (2009) Very long-range effects: cooperativity between anion-π and hydrogen-bonding interactions. Chem Phys Chem 10:2256–2264CrossRefGoogle Scholar
  35. 35.
    Escudero D, Frontera A, Quinonero D, Deya PM (2009) Interplay between anion-π and hydrogen bonding interactions. J Comput Chem 30:75–82CrossRefGoogle Scholar
  36. 36.
    Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323CrossRefGoogle Scholar
  37. 37.
    Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum Press, New YorkCrossRefGoogle Scholar
  38. 38.
    Baeten A, Proft FD, Geerlings P (1995) Basicity of primary amines: a group properties based study of the importance of inductive (electronegativity and softness) and resonance effects. Chem Phys Lett 235:17–21CrossRefGoogle Scholar
  39. 39.
    Baeten A, Proft FD, Geerlings P (1996) Proton affinity of amino acids: their interpretation with density functional theory-based descriptors. Int J Quantum Chem 60:931–940CrossRefGoogle Scholar
  40. 40.
    Akher FB, Ebrahimi A (2015) π-Stacking effects on the hydrogen bonding capacity of methyl 2-naphthoate. J Mol Graph Model 61:115–122CrossRefGoogle Scholar
  41. 41.
    Kushwaha PS, Mishra PC (2000) Relationship of hydrogen bonding energy with electrostatic and polarization energies and molecular electrostatic potentials for amino acids: an evaluation of the lock and key model. Int J Quantum Chem 76:700–713CrossRefGoogle Scholar
  42. 42.
    Mishra PC, Kumar A (1996) Molecular electrostatic potentials and fields: hydrogen bonding, recognition, reactivity and modeling. Theor Comput Chem 3:257–296CrossRefGoogle Scholar
  43. 43.
    Politzer P, Murray JS (1991) Molecular electrostatic potentials and chemical reactivity. Rev Comp Chem 2:273–312Google Scholar
  44. 44.
    Ryan MD (1994) Effect of hydrogen bonding on molecular electrostatic potentials. ACS Symp Ser 569:36–59CrossRefGoogle Scholar
  45. 45.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Computational Quantum Chemistry Laboratory, Department of ChemistryUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations