Structural Chemistry

, Volume 28, Issue 3, pp 655–666 | Cite as

Theoretical kinetic investigation of thermal decomposition of nitropropane

  • Rui Wang
  • Lei Lei
  • Xiao-gang Wang
  • You-song Lu
  • Liang Song
  • Hong-guang Ge
  • Xian-zhao Shao
  • Zhi-yin Wang
  • Tian-lei Zhang
  • Wen-liang Wang
Review Article


The thermal decomposition of nitropropane (CH3CH2CH2NO2) has been investigated at the CBS-QB3 level of theory. The pyrolysis of CH3CH2CH2NO2 mainly includes the simple bond ruptures mechanism, hydrogen abstraction processes, isomerization and secondary reactions. As a result, for the simple bond ruptures mechanism, the formation of \({\text{CH}}_{3} {\text{CH}}_{2} {\text{CH}}_{2}^{\cdot} +\,^{\cdot}{\text{NO}}_{2}\) products is dominant with the energy barrier of 49.77 kcal mol−1. The process of H atom on the β–CH2 abstracted by one O atom of NO2 moiety in CH3CH2CH2NO2(CH3CH2CH2NO2 → CH3CH=CH2 + HONO) needs to overcome lower energy barrier than that of the rate-determining step (one of H atom on the α-CH2 and γ-CH3 abstracted of reaction) of the other hydrogen abstraction reactions. Therefore, we predict that the corresponding alkenes and HONO are the main products in the hydrogen abstraction reaction of nitroparaffin. Besides, the channel of the CH3CH2CHO + HNO formations (CH3CH2C(α)H2NO2 → CH3CH2C(α)H2ONO → CH3CH2CHO + HNO), occurring through the H atom of C(α) abstracted by the N atom of NO2 moiety after the isomerization reaction from CH3CH2CH2NO2 to CH3CH2CH2ONO, is favorable in the isomerization secondary reactions. Rate constants and branching ratios are estimated by means of the conventional transition state theory with zero curvature tunneling over the temperature range of 400–1500 K. The calculation shows that the overall rate constant in the temperature of 400–1500 K is mainly dependent on the competitive channels of formations of CH3CH=CH2 + HONO and \({\text{CH}}_{3} {\text{CH}}_{2} {\text{CH}}_{2}^{\cdot} +\,^{\cdot}{\text{NO}}_{2}\) The three-parameter expression for the total rate constant is fitted to be k total = 1.74 × 10−13 T 8.20exp(17038.7/T) (s−1) between 400 and 1500 K.


CH3CH2CH2NO2 Hydrogen abstraction Isomerization Secondary reaction mechanism 



The project was funded by the National Natural Science Foundation of China under Grant(21603132, 21473108, 21503125); Education department of Shaanxi provincial government research project under Grant (15JK1138); the Funds of Research Programs of Shaanxi University of Technology under Grant (SLGQD13(2)-3, SLGQD13(2)-4).

Supplementary material

11224_2016_834_MOESM1_ESM.doc (131 kb)
Supplementary material 1 (DOC 131 kb)


  1. 1.
    Hu WF, He TJ, Chen DM, Liu FC (2002) J Phys Chem A 106(32):7294CrossRefGoogle Scholar
  2. 2.
    Zhu RS, Lin MC (2009) Chem Phys Lett 478(1):11CrossRefGoogle Scholar
  3. 3.
    Saxon RP, Yoshimine M (1992) Can J Chem 70(2):572CrossRefGoogle Scholar
  4. 4.
    Kuznetsov NM, Petrov YP, Turetskii SV (2012) Kinet Catal 53(1):1CrossRefGoogle Scholar
  5. 5.
    Wang Q, Ng D, Mannan MS (2009) Ind Eng Chem Res 48(18):8745–8751CrossRefGoogle Scholar
  6. 6.
    Dubikhin VV, Nazin GM, Manelis GB (1971) Bull Acad USSR Div Chem Sci 20(7):1319CrossRefGoogle Scholar
  7. 7.
    Spokes GN, Benson SW (1967) J Am Chem Soc 89(24):6030CrossRefGoogle Scholar
  8. 8.
    Zhu RS, Lin MC (2013) J Phys Chem A 117(32):7308CrossRefGoogle Scholar
  9. 9.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.01. Gaussian, Wallingford, CTGoogle Scholar
  10. 10.
    Becke AD (1993) J Chem Phys 98(7):5648CrossRefGoogle Scholar
  11. 11.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785CrossRefGoogle Scholar
  12. 12.
    Gonzalez C, Schlegel HB (1989) J Chem Phys 90(4):2154CrossRefGoogle Scholar
  13. 13.
    Fukui K (1981) Acc Chem Res 14(12):363CrossRefGoogle Scholar
  14. 14.
    Page M, McIver JW Jr (1988) J Chem Phys 88(2):922CrossRefGoogle Scholar
  15. 15.
    Petersson GA, Tensfeldt TG, Montgomery JA Jr (1991) J Chem Phys 94(9):6091CrossRefGoogle Scholar
  16. 16.
    Montgomery JA Jr, Ochterski JW, Petersson GA (1994) J Chem Phys 101(7):5900CrossRefGoogle Scholar
  17. 17.
    Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110(6):2822CrossRefGoogle Scholar
  18. 18.
    Sirjean B, Dames E, Wang H, Tsang W (2011) J Phys Chem A 116(1):319CrossRefGoogle Scholar
  19. 19.
    Jurečka P, Šponer J, Černý J, Hobza P (2006) Phys Chem Chem Phys 8(17):1985CrossRefGoogle Scholar
  20. 20.
    Casasnovas R, Frau J, Ortega-Castro J, Salvà A, Donoso J, Muñoz F (2010) Int J Quantum Chem 110(2):323CrossRefGoogle Scholar
  21. 21.
    Miller WH (1974) J Chem Phys 61(5):1823CrossRefGoogle Scholar
  22. 22.
    Garrett BC, Truhlar DG (1979) J Chem Phys 70(4):1593CrossRefGoogle Scholar
  23. 23.
    Garrett BC, Truhlar DG (1979) J Chem Phys 101(16):4534Google Scholar
  24. 24.
    Li QS, Zhang J, Zhang S (2005) Chem Phys Lett 404(1):100CrossRefGoogle Scholar
  25. 25.
    Zhang S, Truong TN (2001) VKLab version 1.0. University of UtahGoogle Scholar
  26. 26.
    Denis PA, Ventura ON, Le HT, Nguyen MT (2003) Phys Chem Chem Phys 5(9):1730CrossRefGoogle Scholar
  27. 27.
    Homayoon Z, Bowman JM (2013) J Phys Chem A 117(46):11665CrossRefGoogle Scholar
  28. 28.
    Benson SW, O’Neal HE (1970) National Standard Reference Data SystemGoogle Scholar
  29. 29.
    Benson SW, Spokes GN (1967) J Am Chem Soc 89(11):2525CrossRefGoogle Scholar
  30. 30.
    Nguyen MT, Le HT, Hajgato B, Veszpremi T, Lin MC (2003) J Phys Chem A 107(21):4286CrossRefGoogle Scholar
  31. 31.
    Wilde KA (2002) Ind Eng Chem 48(4):769CrossRefGoogle Scholar
  32. 32.
    Cottrell TL, Graham TE, Reid TJ (1951) Trans Faraday Soc 47(2):1089CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rui Wang
    • 1
  • Lei Lei
    • 1
    • 2
  • Xiao-gang Wang
    • 2
  • You-song Lu
    • 1
  • Liang Song
    • 1
  • Hong-guang Ge
    • 1
  • Xian-zhao Shao
    • 1
  • Zhi-yin Wang
    • 1
  • Tian-lei Zhang
    • 1
  • Wen-liang Wang
    • 2
  1. 1.School of Chemical and Environment Science, Shaanxi Key Laboratory of CatalysisShaanxi Sci-Tech UniversityHanzhongChina
  2. 2.School of Chemistry and Chemical Engineering, Key Laboratory for Macromolecular Science of Shaanxi ProvinceShaanxi Normal UniversityXi’anChina

Personalised recommendations