Structural Chemistry

, Volume 28, Issue 3, pp 597–605 | Cite as

Halodiazirines and halodiazo compounds: a computational study of their thermochemistry and isomerization reaction

  • Luz A. Zapata
  • Steffanía López
  • Pablo Ruiz
  • Jairo Quijano
  • Rafael Notario
Original Research

Abstract

A computational study of the isomerization reaction of a series of halodiazirines to halodiazo compounds (cyclic to open-chain RXCN2 species) has been carried out in order to establish the effect of the substituent groups on the isomerization rates and to obtain computational evidence of reaction mechanisms. Fluorine and chlorine were present as the halogen (X) atom, and the groups R=H, CH3, C2H5, n-C3H7, i-C3H7, cyclo-C3H5, phenyl, OCH3 and OH were used. Thermochemical calculations and natural bond orbital analyses were carried out at the B3LYP/6-31+G(d,p) level of theory. The results allowed us to discuss a reaction mechanism that proceeds in two steps: The first is the extrusion of nitrogen and formation of a carbene through a cyclic transition state that promotes the simultaneous breaking of the two C–N bonds, and the second one is described as the rebounding between the carbene and one of the nitrogen atoms of molecular nitrogen, both formed in the first step. The enthalpies of formation of halodiazirines and halodiazoalkanes have been calculated at the G3 level of theory.

Keywords

Halodiazirines Diazo compounds Isomerization reaction Substituent effect Transition state 

Notes

Acknowledgments

We thank the financial support of the Universidad Nacional de Colombia-Medellín through the convocatory “Apoyo a grupos de investigación Facultad de Ciencias” under the project number 201010015547.

Supplementary material

11224_2016_824_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 10 kb)
11224_2016_824_MOESM2_ESM.pdf (868 kb)
Supplementary material 2 (PDF 868 kb)

References

  1. 1.
    Korneev SM (2011) Eur J Org Chem 6153-6175Google Scholar
  2. 2.
    Pfeiffer F, Rauhut G (2011) J Phys Chem A 115:11050–11056CrossRefGoogle Scholar
  3. 3.
    Moss RA, Tian J, Chu G, Sauers RR, Krogh-Jespersen K (2007) Pure Appl Chem 79:993–1001CrossRefGoogle Scholar
  4. 4.
    Liu MTH, Choe Y-K, Kimura M, Kobayashi K, Nagase S, Wakahara T, Niino Y, Ishitsuka MO, Maeda Y, Akasaka T (2003) J Org Chem 68:7471–7478CrossRefGoogle Scholar
  5. 5.
    Moss RA (2006) Acc Chem Res 39:267–271CrossRefGoogle Scholar
  6. 6.
    Muller-Remmers PL, Jug K (1985) J Am Chem Soc 107:7275–7284CrossRefGoogle Scholar
  7. 7.
    Liu MTH (1987) Chemistry of Diazirines. CRC Press, Boca RatonGoogle Scholar
  8. 8.
    Zhang Y, Vyas S, Hadad CM, Platz MS (2010) J Phys Chem A 114:5902–5912CrossRefGoogle Scholar
  9. 9.
    Fedorov I, Koziol L, Mollner AK, Krylov AI, Reisler H (2009) J Phys Chem A 113:7412–7421CrossRefGoogle Scholar
  10. 10.
    Smith NP, Stevens IDR (1979) J Chem Soc Perkin Trans 2:213–216CrossRefGoogle Scholar
  11. 11.
    Frey HM, Stevens IDR (1962) J Chem Soc 3865–3867Google Scholar
  12. 12.
    Stevens IDR, Liu MTH, Soundararajan N, Paike N (1990) J Chem Soc Perkin Trans 2:661–667CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Burdzinski G, Kubicki J, Vyas S, Hadad CM, Sliwa M, Poizat O, Buntinx G, Platz MS (2009) J Am Chem Soc 131:13784–13790CrossRefGoogle Scholar
  14. 14.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision B.01, Gaussian Inc., Wallingford CTGoogle Scholar
  15. 15.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728CrossRefGoogle Scholar
  16. 16.
    Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683–11700CrossRefGoogle Scholar
  17. 17.
    Kenichi F (1970) J Phys Chem 74:4161–4163CrossRefGoogle Scholar
  18. 18.
    Reed AE, Weinhold FJ (1983) Chem Phys 78:4066–4073Google Scholar
  19. 19.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  20. 20.
    Wiberg KB (1968) Tetrahedron 24:1083–1096CrossRefGoogle Scholar
  21. 21.
    Glendening ED, Reed AE, Carpenter JE, Weinhold F (1988) NBO version 3.1 Madison, WIGoogle Scholar
  22. 22.
    Glasstone S, Laidler K, Eyring H (1941) The theory of rate processes, 1st edn. McGraw Hill, New YorkGoogle Scholar
  23. 23.
    Benson SW (1969) The foundations of chemical kinetics. McGraw Hill, New YorkGoogle Scholar
  24. 24.
    Liu MTH, Toriyama K (1972) Can J Chem 50:3009–3016CrossRefGoogle Scholar
  25. 25.
    Liu MTH, Chien DHT (1974) J Chem Soc Perkin Trans 2:937–941CrossRefGoogle Scholar
  26. 26.
    Bridge MR, Frey HM, Liu MTH (1969) J Chem Soc A 91-94Google Scholar
  27. 27.
    Frey HM, Liu MTH (1970) J Chem Soc A 1916–1919Google Scholar
  28. 28.
    Moyano A, Pericas MA, Valentí E (1989) J Org Chem 54:573–582CrossRefGoogle Scholar
  29. 29.
    Notario R, Castaño O, Gomperts R, Frutos LM, Palmeiro R (2000) J Org Chem 65:4298–4302CrossRefGoogle Scholar
  30. 30.
    Laufer QAH, Okabe H (1971) J Am Chem Soc 93:4137–4140CrossRefGoogle Scholar
  31. 31.
    Paulett GS, Ettinger R (1963) J Chem Phys 39:825–827CrossRefGoogle Scholar
  32. 32.
    Catoire L, Swihart MT (2002) J Propul Power 18:1242–1253CrossRefGoogle Scholar
  33. 33.
    Gordon MS, Kass SR (1995) J Phys Chem 99:6548–6550CrossRefGoogle Scholar
  34. 34.
    Gordon MS, Kass SR (1997) J Phys Chem A 101:7922CrossRefGoogle Scholar
  35. 35.
    Dixon DA, de Jong WA, Peterson KA, McMahon TB (2005) J Phys Chem A 109:4073–4080CrossRefGoogle Scholar
  36. 36.
    Archer WH, Tyler BJ (1976) J Chem Soc, Faraday Trans 1(72):1448–1455CrossRefGoogle Scholar
  37. 37.
    Cadman P, Engelbrecht WJ, Lotz S, Van der Merwe SWJ (1974) J S Af Chem Inst 27:149–161Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Luz A. Zapata
    • 1
  • Steffanía López
    • 1
  • Pablo Ruiz
    • 1
  • Jairo Quijano
    • 1
  • Rafael Notario
    • 2
  1. 1.Laboratorio de Fisicoquímica Orgánica, Facultad de CienciasUniversidad Nacional de Colombia, Sede MedellínMedellínColombia
  2. 2.Instituto de Química Física RocasolanoCSICMadridSpain

Personalised recommendations