Structural Chemistry

, Volume 28, Issue 3, pp 587–596 | Cite as

Comparative study of NH···O and NH···S intramolecular hydrogen bonds in β-aminoacrolein, β-thioaminoacrolein and their halogenated derivatives by some usual methods

Original Research


We first use the second-order Møller–Plesset theory to optimize β-aminoacrolein, β-thioaminoacrolein and a set of their halogenated derivatives, which involve N–H···O and N–H···S hydrogen bonds. Then, four different methods, namely rotation barrier method (RBM), isodesmic reaction method (IRM), geometry corrected method (GCM) and related rotamers method, (RRM) are utilized to estimate the intramolecular hydrogen bond (IMHB) energies. The linear correlations between the estimated IMHB energies and some hydrogen bond strength descriptors such as geometrical, electron density topological and spectroscopic parameters are obtained. According to our data, RRM and RBM have the best linear correlations with all of the hydrogen bond descriptors, while GCM and IRM do not reveal suitable results. It is assumed that the performance or reliability of the estimating methods is determined based on the value of squared regression coefficients (R 2). By adding the results of the previous studies including OH···O, OH···S and NH···O hydrogen bond units to the present obtained data, the methods can be sorted according to their relative reliability as follows: RRM > RBM ≫ GCM > IRM.


Intramolecular hydrogen bond RAHB QTAIM NBO 



The authors thank the University of Sistan and Baluchestan (USB) for the financial supports.


  1. 1.
    Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Grabowski SJ (2006) Hydrogen bonding-newinsights. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Scheiner S (1997) Hydrogen bonding; a theoretical perspective. University Press, New YorkGoogle Scholar
  4. 4.
    Gilli G, Gilli P (2009) The nature of hydrogen bond. Oxford University Press, New YorkCrossRefGoogle Scholar
  5. 5.
    Sanz P, Mό O, Yáñez M, Elguero J (2007) Chem Phys Chem 8:1950CrossRefGoogle Scholar
  6. 6.
    Sanz P, Mό O, Yáñez M, Elguero J (2008) Chem-Eur J 14:4225CrossRefGoogle Scholar
  7. 7.
    Alkorta I, Elguero J, Mό O, Yáñez M, Bene JD (2004) Mol Phys 102:2563CrossRefGoogle Scholar
  8. 8.
    Alkorta I, Elguero J, Mό O, Yáñez M, Bene JD (2005) Chem Phys Lett 411:411CrossRefGoogle Scholar
  9. 9.
    Emsley J (1984) Structure and bonding, vol 2. Springer, BerlinGoogle Scholar
  10. 10.
    Woodford JN (2007) J Phys Chem 111A:8519CrossRefGoogle Scholar
  11. 11.
    Nowroozi A, Raissi H (2006) J Mol Struct (THEOCHEM) 759:93CrossRefGoogle Scholar
  12. 12.
    Raissi H, Nowroozi A, Roozbeh M, Farzad F (2006) J Mol Struct 787:148CrossRefGoogle Scholar
  13. 13.
    Nowroozi A, Roohi H, Sadeghi MS, Sheibaninia M (2011) Int J Quantum Chem 111:578CrossRefGoogle Scholar
  14. 14.
    Kuldova K, Corval A, Trommsdorff HP, Lehn JM (1997) J Phys Chem 101A:6850CrossRefGoogle Scholar
  15. 15.
    Douhal A, Sastre R (1994) Chem Phys Lett 219:91CrossRefGoogle Scholar
  16. 16.
    Sytnic A, Del Valle JC (1995) J Phys Chem 99:13028CrossRefGoogle Scholar
  17. 17.
    Schuster P, Zundel G (1976) The hydrogen bond. Recent Developmentin Theory and Experiment, Nourth-HollandGoogle Scholar
  18. 18.
    Buemi G, Zuccarello F (2004) Chem Phys 306:115CrossRefGoogle Scholar
  19. 19.
    Jablonski M, Kaczmarek A, Sadlej AJ (2006) J Phys Chem A 110:10890CrossRefGoogle Scholar
  20. 20.
    Nowroozi A, Raissi H, Farzad F (2005) J Mol Struct (THEOCHEM) 730:161CrossRefGoogle Scholar
  21. 21.
    Rozas I, Alkorta I, Elguero J (2001) J Phys Chem A 105:10462CrossRefGoogle Scholar
  22. 22.
    Nowroozi A, Raissi H, Hajiabadi H, Mohammadzadeh P (2011) Int J Quantum Chem 111:3040CrossRefGoogle Scholar
  23. 23.
    Nowroozi A, Hajiabadi H, Akbari F (2014) Struct Chem 25:251CrossRefGoogle Scholar
  24. 24.
    Nowroozi A, Roohi H, Hajiabadi H, Raissi H, Khalilinia E, Najafi B (2011) Comput Theo Chem 963:517CrossRefGoogle Scholar
  25. 25.
    Hajiabadi H, Nowroozi A, Hasani H, Mohammadzadeh P, Raissi H (2012) Int J Quantum Chem 112:1384CrossRefGoogle Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zarzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03 (Revision B.01). Gaussian, Inc., Pittsburgh, PAGoogle Scholar
  27. 27.
    Biegler-König F, Schönbohm J, Bayles D (2001) AIM 2000: a program to analyze and visualize atoms in molecules. J Comp Chem 22:545CrossRefGoogle Scholar
  28. 28.
    Glendening DE, Reed AE, Carpenter JE, Weinhold F NBO Version3.1Google Scholar
  29. 29.
    Jablonski M (2010) Chem Phys 376:76CrossRefGoogle Scholar
  30. 30.
    Grabowski SJ (2004) J Phys Org Chem 17:18CrossRefGoogle Scholar
  31. 31.
    Jablonski M (2012) J Phys Chem A 116:3753CrossRefGoogle Scholar
  32. 32.
    Buemi G, Zuccarello F (2002) J Mol Struct (THEOCHEM) 581:71CrossRefGoogle Scholar
  33. 33.
    Musin RN, Mariam YH (2006) J Phys Org Chem 19:425CrossRefGoogle Scholar
  34. 34.
    Koch W, Frenking G, Gauss J, Cremer D, Collins JR (1987) J Am Chem Soc 109:5917CrossRefGoogle Scholar
  35. 35.
    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154CrossRefGoogle Scholar
  36. 36.
    Espinosa E, Molins M, Lecomte C (1998) Chem Phys Lett 285:170CrossRefGoogle Scholar
  37. 37.
    Bader RFW (1990) Atoms in molecules. A Quantum Theory; Clarendon, OxfordGoogle Scholar
  38. 38.
    Grabowski SJ (2001) J Mol Struct 562:137CrossRefGoogle Scholar
  39. 39.
    Grabowski SJ (1999) Chem Phys Lett 312:542CrossRefGoogle Scholar
  40. 40.
    Espinosa E, Molins M (2000) Chem Phys 113:5686Google Scholar
  41. 41.
    Grabowski SJ (2001) Chem Phys Lett 338:361CrossRefGoogle Scholar
  42. 42.
    Reed AE, Curtis LA, Weinhold FA (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  43. 43.
    Raissi H, Farzad F, Nowroozi A (2005) J Mol Struct 752:130CrossRefGoogle Scholar
  44. 44.
    Raissi H, Nowroozi A, Farzad F (2006) Spectrochim. Acta. A 63:729CrossRefGoogle Scholar
  45. 45.
    Raissi H, Nowroozi A, Hakimi M (2006) Spectrochim Acta A 65:605CrossRefGoogle Scholar
  46. 46.
    Pratt DA, Heer MI, Mulder P, Ingold KU (2001) J Am Chem Soc 123:5518CrossRefGoogle Scholar
  47. 47.
    Song KS, Liu L, Guo QX (2003) J Org Chem 68:262CrossRefGoogle Scholar
  48. 48.
    Borges DS, Martinho SJA (1998) J Phys Chem Ref Data 1998(27):707CrossRefGoogle Scholar
  49. 49.
    Deshmukh MM, Suresh CH, Gadre SR (2007) J Phys Chem A 111:6472CrossRefGoogle Scholar
  50. 50.
    Jabłonski M, Monaco G (2013) J Chem Inf Model 53:1661CrossRefGoogle Scholar
  51. 51.
    Nowroozi A, Mohammadzadeh Jahani P, Asli N, Hajiabadi H, Dahmardeh S, Raissi H (2012) Int J Quant Chem 112:489CrossRefGoogle Scholar
  52. 52.
    Mohammadzadeh Jahani P, Nowroozi A, Hajiabadi H, Hassani H (2012) Struct Chem 23:1941CrossRefGoogle Scholar
  53. 53.
    Mohammadzadeh Jahani P, Nowroozi A (2013) Int J Quantum Chem 113:102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of Sistan and Baluchestan (USB)ZahedanIran

Personalised recommendations