Structural Chemistry

, Volume 28, Issue 3, pp 607–616 | Cite as

The unsubstituted ortho-amidino benzoic acid: crystal structure, characterization and pK a determination

  • Olga V. Hordiyenko
  • Angelina V. Biitseva
  • Yuliya Yu. Kostina
  • Roman I. Zubatyuk
  • Oleg V. Shishkin
  • Ulrich M. Groth
  • Mikhail Yu. Kornilov
Original Research
  • 172 Downloads

Abstract

The simplest o-amidino benzoic acid—2-(amino(imino)methyl)benzoic acid—has been isolated in 23 % yield as a side product of the reaction of phthalonitrile and ammonia along with desired 1-imino-1H-isoindol-3-amine. This amidino acid was fully characterized by nuclear magnetic resonance, IR spectroscopy, mass spectrometry; pKa values were also determined. X-ray diffraction study and quantum chemical calculations revealed that in the solid state it exists as a zwitterion that is stabilized by intermolecular hydrogen bonds.

Keywords

Phthalonitrile 2-(Amino(imino)methyl)benzoic acid 1-Imino-1H-isoindol-3-amine Solid state structure Zwitterion 

Notes

Acknowledgments

We thank Konstanz University for visiting professorship (to O. V. H.) and Dr. Nikolay Youhnovski for providing ESI mass spectrum measurements. We are grateful to Dr. Agnieszka Dobosz (Wroclaw Medical University, Poland) for carrying out pK a determination. We would like to thank Dr. Svetlana Shishkina for X-ray and computational discussion, and Dr. Andrei Esaulenko (ALSI-CHROM, Kyiv) for ESI–MS analysis discussion.

Supplementary material

11224_2016_822_MOESM1_ESM.doc (1.6 mb)
Supplementary material 1 (DOC 1589 kb)

References

  1. 1.
    Erk P, Hengelsberg H (2003) In: Kadish K, Guilard R, Smith KM (eds) The porphyrin handbook. Academic Press, New YorkGoogle Scholar
  2. 2.
    Radtke V, Erk P, Sens B (2002) In: Smith H (ed) High performance pigments. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Vollmann H (1971) In: Venkataraman K (ed) The chemistry of synthetic dyes. Academic Press, New YorkGoogle Scholar
  4. 4.
    Rösch G, Wolf W, Vollmann H (1954) Chem Abstr 48:30802Google Scholar
  5. 5.
    Elvidge JA, Barot NR (1977) In: Patai S (ed) The chemistry of double-bonded functional groups. Wiley, LondonGoogle Scholar
  6. 6.
    Elvidge JA, Linstead RP (1952) J Chem Soc 5000–5007Google Scholar
  7. 7.
    Sato R, Senzaki T, Shikazaki Y, Goto T, Saito M (1984) Chem Lett 13:1423–1426CrossRefGoogle Scholar
  8. 8.
    Lowery MK, Starshak AJ, Esposito JN, Krueger PC, Kenney ME (1965) Inorg Chem 4:128–129CrossRefGoogle Scholar
  9. 9.
    Sasa N, Okada K, Nakamura K, Okada S (1998) J Mol Struct 446:163–178CrossRefGoogle Scholar
  10. 10.
    Morrissey MM, Buckman B, Mohan R (1998) Chem Abstr 128:204736Google Scholar
  11. 11.
    Maiorino RM, Weber GL, Aposhian HV (1986) J Chromatogr B 374:297–310CrossRefGoogle Scholar
  12. 12.
    Alt GH, Franz JE (1976) Chem Abstr 85:1213Google Scholar
  13. 13.
    Kopylovich MN, Haukka M, Mahmudov KT (2015) Tetrahedron 71:8622–8627CrossRefGoogle Scholar
  14. 14.
    Clare M, Hagen TJ, Houdek SC, Lennon PJ, Weier RM, Xu X (2005) Chem Abstr 142:463736Google Scholar
  15. 15.
    Cesar J, Pecar S (2005) Chem Abstr 143:229571Google Scholar
  16. 16.
    Wagner G, Vieweg H, Kuehmstedt H (1973) Pharmazie 28:288–292Google Scholar
  17. 17.
    Gans P, Sabatini A, Vacca A (1985) J Chem Soc Dalton 6:1195–1200CrossRefGoogle Scholar
  18. 18.
    Sheldrick GM (2008) Acta Cryst. A64:112–122CrossRefGoogle Scholar
  19. 19.
    Spek AL (2009) Acta Cryst. D65:148–155Google Scholar
  20. 20.
  21. 21.
    Gonzales C, Schlegel HB (1989) J Chem Phys 90:2154–2161CrossRefGoogle Scholar
  22. 22.
    DiGangi FE, Gisvold O (1949) J Am Pharm Assoc Sci 38:154–158CrossRefGoogle Scholar
  23. 23.
    Tanizawa K, Iskii S, Kanaoka Y (1968) Biochem Bioph Res Co 32:893–897CrossRefGoogle Scholar
  24. 24.
    Tanizawa K, Iskii S, Kanaoka Y (1970) Chem Pharm Bull 18:2247–2252CrossRefGoogle Scholar
  25. 25.
    Pinner A, Gradenwitz F (1897) Liebigs Ann Chem 298:45–53CrossRefGoogle Scholar
  26. 26.
    Kirby JP, Roberts JA, Nocera DG (1997) J Am Chem Soc 118:9230–9236CrossRefGoogle Scholar
  27. 27.
    Roberts JA, Kirby JP, Wall ST, Nocera DG (1997) Inorg Chim Acta 263:395–405CrossRefGoogle Scholar
  28. 28.
    Papoutsakis D, Kirby JP, Jackson JE, Nocera DG (1999) Chem-Eur J 5:1474–1480CrossRefGoogle Scholar
  29. 29.
    Young MB, Barrow JC, Glass KL, Lundell GF, Newton CL, Pellicore JM, Rittle KE, Selnick HG, Stauffer KJ, Vacca JP, Williams PD, Bohn D, Clayton FC, Cook JJ, Krueger JA, Kuo LC, Lewis SD, Lucas BJ, McMasters DR, Miller-Stein C, Pietrak BL, Wallace AA, White RB, Wong B, Yan Y, Nantermet PG (2004) J Med Chem 47:2995–3008CrossRefGoogle Scholar
  30. 30.
    Borodkin VF, Postnikov VI (1974) Chem Abstr 81:105273Google Scholar
  31. 31.
    Baumann F, Bienert B, Rösch G, Vollmann H, Wolf W (1956) Angew Chem Int Edit 68:133–150CrossRefGoogle Scholar
  32. 32.
    Leznoff CC, Lever ABP (1996) Phthalocyanines: properties and applications. VHC Publishers, New YorkGoogle Scholar
  33. 33.
    Borodkin VF (1958) Zh Prikl Khim (USSR) 5:813–816Google Scholar
  34. 34.
    Takahashi I, Nishiuchi K, Miyamoto R, Hatanaka M, Uchida H, Isa K, Sakushima A, Hosoi S (2005) Lett Org Chem 2:40–43CrossRefGoogle Scholar
  35. 35.
    Orpen AG, Brammer I, Allen FH, Kennard O, Watson DG, Taylor R (1994) In: Burgi H-B, Dunitz JD (eds) Structure correlation. Wiley-VCH, WeinheimGoogle Scholar
  36. 36.
    Locke MJ, Hunter RL, McIver RT (1979) J Am Chem Soc 101:272–273CrossRefGoogle Scholar
  37. 37.
    Bertran J, Rodriguez-Santiago L, Sodupe M (1999) J Phys Chem B 103:2310–2317CrossRefGoogle Scholar
  38. 38.
    Chapo CJ, Paul JB, Provencal RA, Roth K, Saykally RJ (1998) J Am Chem Soc 120:12956–12957CrossRefGoogle Scholar
  39. 39.
    Zhang DX, Wu LM, Koch KJ, Cooks RG (1999) Eur J Mass Spectrom 5:353–361CrossRefGoogle Scholar
  40. 40.
    Julian RR, Hodyss R, Beauchamp JL (2001) J Am Chem Soc 123:3577–3583CrossRefGoogle Scholar
  41. 41.
    Julian RR, Beauchamp JL, Goddard WA (2002) J Phys Chem A 106:32–34CrossRefGoogle Scholar
  42. 42.
    Reece SY, Nocera DG (2009) Annu Rev Biochem 78:673–699 and cited hereinGoogle Scholar
  43. 43.
    Melo A, Ramos MJ, Floriano WB, Gomes JANF, Leão JFR, Magalhaães AL, Maigret B, Nascimento MC, Reuter N (1999) J Mol Struct (Theochem) 463:81–90CrossRefGoogle Scholar
  44. 44.
    Riordan JF, McElvany KD, Borders CL Jr (1977) Science 195(4281):884–886CrossRefGoogle Scholar
  45. 45.
    Peterlin-Mašič L (2006) Curr Med Chem 13(30):3627–3648CrossRefGoogle Scholar
  46. 46.
    Spiessens LIM, Anteunis MJO (1980) Bull Soc Chim Belg 89:205–231Google Scholar
  47. 47.
    Hafelinger G, Kuske FKH (1991) In: Patai S, Rappoport Z (eds) The chemistry of amidines and imidates. Wiley, ChichesterGoogle Scholar
  48. 48.
    Vanden Eynde JJ, Mayence A, Mottamal M, Bacchi CJ, Yarlett N, Kaiser M, Brun R, Huang TL (2016) Pharmaceuticals 9: doi: 10.3390/ph9020020
  49. 49.
    Sánchez MI, Vázquez O, Vázquez ME, Mascarenas JL (2011) Chem Commun 47:11107–11109CrossRefGoogle Scholar
  50. 50.
    Bordello J, Sánchez MI, Vázquez ME, Mascarenas JL, Al-Soufi W, Novo M (2014) Chem Eur J 20:1–12CrossRefGoogle Scholar
  51. 51.
    Alves NJ, Kline JA (2015) Biochem Bioph Res Co 457:358–362CrossRefGoogle Scholar
  52. 52.
    Chen M-T, Wu K-M, Chen C-T (2012) Eur J Inorg Chem 4:720–726CrossRefGoogle Scholar
  53. 53.
    Wang W-C, Peng K-F, Chen M-T, Chen C-T (2012) Dalton Trans 41:3022–3029CrossRefGoogle Scholar
  54. 54.
    Tan C, Liu F-S, Shen D-S, Cheng T, Zhou Z-Z (2011) Catal Lett 141:1332–1337CrossRefGoogle Scholar
  55. 55.
    Bakthavachalam K, Rajagopal A, Dastagiri Reddy N (2014) Dalton Trans 43:14816–14823CrossRefGoogle Scholar
  56. 56.
    Lei Y, Chen F, Luo Y, Xu P, Wang Y, Zhang Y (2011) Inorg Chim Acta 368:179–186CrossRefGoogle Scholar
  57. 57.
    Sugihara H, Fukushi H, Miyawaki T, Imai Y, Terashita Z, Kawamura M, Fujisawa Y, Kita S (1998) J Med Chem 41:489–502CrossRefGoogle Scholar
  58. 58.
    Liebeschuetz JW, Jones SD, Morgan PJ, Murray CW, Rimmer AD, Roscoe JME, Waszkowycz B, Welsh PM, Wylie WA, Young SC, Martin H, Mahler J, Brady L, Wilkinson K (2002) J Med Chem 45:1221–1232CrossRefGoogle Scholar
  59. 59.
    Jones SD, Liebeschuetz JW, Morgan PJ, Murray CW, Rimmer AD, Roscoe KME, Waszkowycz B, Welsh PM, Wylie WA, Young SC, Martin H, Mahler J, Brady L, Wilkinson K (2001) Bioorg Med Chem Lett 11:733–736CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of ChemistryTaras Shevchenko National University of KyivKyivUkraine
  2. 2.SSI “Institute for Single Crystals” National Academy of Science of UkraineKharkivUkraine
  3. 3.Department of Inorganic ChemistryV. N. Karazin Kharkiv National UniversityKharkivUkraine
  4. 4.Fachbereich ChemieUniversität KonstanzKonstanzGermany

Personalised recommendations