Advertisement

Structural Chemistry

, Volume 28, Issue 3, pp 645–654 | Cite as

The effect of nitro groups on the structures and energetic properties of the derivatives composed of TATB and cubane

Original Research

Abstract

Based on the successful experience of synthesis of the TATB (1, 3, 5-triamino-2, 4, 6-trinitrobenzene) and cubane, we propose to consider their nitro derivatives combined by C–N bond as a series of high energy density compounds. First principles molecular orbital calculations have been used to investigate the structural and energetic properties, including the heat of formation, density, detonation performance, and impact sensitivity. Natural bond orbital analysis was carried out to investigate the influence of substituents on the electron delocalization. The results implied that the inclusion of nitro group will decrease the stability of cage skeleton and weaken the C–NO2 bond. The calculated heats of formation, density, detonation velocity, and detonation pressure are positive and large. The results revealed that two of five derivatives have the close performance and sensitivity to those of CL-20, indicating that they may be explored as new potential high energy materials. Leave them with the notable value to dig out.

Keywords

Cage High energy density compound Detonation performance Stability Sensitivity 

Notes

Acknowledgments

This project is supported by the research fund of ChuZhou University under Nos. 2014qd039 and 2015qd13.

References

  1. 1.
    Gilbert PS, Jack A (1986) J Energy Mater 45:5–28Google Scholar
  2. 2.
    Eaton PE, Cole TW Jr. (1964) J Am Chem Soc 86:962–964CrossRefGoogle Scholar
  3. 3.
    Eaton PE, Cole TW Jr. (1964) J Am Chem Soc 86(15):3157–3158CrossRefGoogle Scholar
  4. 4.
    Eaton PE, Shankar BKR, Price GD et al (1984) J Org Chem 49(1):185–186CrossRefGoogle Scholar
  5. 5.
    Hassenrueck K, Martin HD, Walsh R (1989) Chem Rev 89(5):1125–1146CrossRefGoogle Scholar
  6. 6.
    Lukin KA, Li JC, Gilardi R et al (1996) Angew Chem lnt Ed 35(8):864–866CrossRefGoogle Scholar
  7. 7.
    Eaton PE, Xiong Y, Gilardi R (1993) J Am Chem Soc 115(22):10195–10202CrossRefGoogle Scholar
  8. 8.
    Eaton PE, Zhang MX, Gilardi R et al (2002) Propellants Explos Pyrotech 27:1–6Google Scholar
  9. 9.
    Zhang MX, Eaton PE, Gilardi R (2000) Angew Chem lnt Ed 39(2):401–404CrossRefGoogle Scholar
  10. 10.
    Wang F, Xu XJ, Xiao HM, Zhang J (2003) J Chin Chem Soc 61(12):1939–1943Google Scholar
  11. 11.
    Xu XJ, Xiao HM (2008) J Chin Chem Soc 66(20):2219–2226Google Scholar
  12. 12.
    Kortus J, Pederson MR, Richardson SL (2000) Chem Phys Lett 322:224–230CrossRefGoogle Scholar
  13. 13.
    Eaton PE, Gilardi RL, Zhang MX (2000) Adv Mater 12:1143–1148CrossRefGoogle Scholar
  14. 14.
    David AH, Weston TB, Eaton PE, Bart K (2001) J Am Chem Soc 123:1289–1293CrossRefGoogle Scholar
  15. 15.
    Kybett BD, Carroll S, Natalis P, Bonnell DW, Margrave JL, Franklin JL (1966) J Phys Chem A 88:626Google Scholar
  16. 16.
    Zheng J (1995) J Solid Rocket Technol 18:45–52Google Scholar
  17. 17.
    Qiu L, Xu XJ, Xiao HM (2005) Chin J Energ Mater 13:62–268Google Scholar
  18. 18.
    Eaton PE (1992) Angew Chem Int Ed Engl 31:1421–1436CrossRefGoogle Scholar
  19. 19.
    Sheng JL, Wan LP, Ying NC, Yan QX, Kun LH, Chang WH (2008) Chin Chem Lett 19(10):1147–1150CrossRefGoogle Scholar
  20. 20.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford, CTGoogle Scholar
  21. 21.
    Ghule VD, Jadhav PM, Patil RS, Radhakrishnan S, Soman T (2010) J Phys Chem A 114:498–503CrossRefGoogle Scholar
  22. 22.
    Chen ZX, Song WH, Xiao HM (1999) Chin J Energ Mater 7:103–109Google Scholar
  23. 23.
    Liu XF, Xu WG, Lu SX (2009) Chem J Chin Univ 30:1406–1409Google Scholar
  24. 24.
    Li JS, Xiao HM (1999) Chin J Chem Phys 12:597–602Google Scholar
  25. 25.
    Qiu LM, Gong XD, Zheng J, Xiao HM (2008) Chin J Energ Mater 16(6):647–651Google Scholar
  26. 26.
    Qiu L, Xiao HM, Gong XD, Ju XH, Zhu WH (2006) J Phys Chem A 110:3797–3807CrossRefGoogle Scholar
  27. 27.
    Zhang J, Xiao HM (2002) J Chem Phys 116:10674–10683CrossRefGoogle Scholar
  28. 28.
    Zhang JY, Gong XD (2015) J Mol Model 21(4):1–8CrossRefGoogle Scholar
  29. 29.
    Zhang JY, Gong XD (2015) J Phys Org Chem 28(9):577–585CrossRefGoogle Scholar
  30. 30.
    Zhang JY, Du HC, Wang F, Gong XD, Huang YS (2011) J Phys Chem A 115(24):6617–6621CrossRefGoogle Scholar
  31. 31.
    Zhang JY, Du HC, Wang F, Gong XD, Huang YS (2012) J Mol Model 18(1):165–170CrossRefGoogle Scholar
  32. 32.
    Zhang JY, Du HC, Wang F, Gong XD (2013) Struct Chem 24(4):1339–1346CrossRefGoogle Scholar
  33. 33.
    Zhang JY, Du HC, Wang F, Gong XD, Ying SJ (2012) J Mol Model 18(6):2369–2376CrossRefGoogle Scholar
  34. 34.
    Zhang JY, Wang F, Gong XD (2013) Struct Chem 24(6):2163–2172CrossRefGoogle Scholar
  35. 35.
    Glendening ED, Reed AE, Carpenter JE, Weinhold F (1988) NBO, version 3.1; Madison, WIGoogle Scholar
  36. 36.
    Sun CH, Zhao XQ, Li YC, Pang SP (2010) Chin Chem Lett 21:572CrossRefGoogle Scholar
  37. 37.
    Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  38. 38.
    Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384:187CrossRefGoogle Scholar
  39. 39.
    Politzer P, Lane P, Murray LS (2011) Cent Eur J Energ Mater 8(1):39–52Google Scholar
  40. 40.
    Kamlet MJ, Jacobs ST (1968) J Chem Phys 48:23–30CrossRefGoogle Scholar
  41. 41.
    Xiao HM (2004) Structures and properties of energetic compounds. National Defence industry inpress, BeijingGoogle Scholar
  42. 42.
    Lide DR (ed) (2009) CRC handbook of chemistry and physics, 89th edn. CRC Press/Taylor and Francis, Boca Raton (Internet Version, 2010) Google Scholar
  43. 43.
    Zhang XH, Yun ZH (1989) Explosive chemistry. National Defence industry inpress, BeijingGoogle Scholar
  44. 44.
    Hui JM, Chen TY (1995) Theories of explosive detonation. Jiangsu Science and Technology Press, NanjingGoogle Scholar
  45. 45.
    Zhou L (2005) Base of explosion chemistry. Beijing institute of Technology Press, BeijingGoogle Scholar
  46. 46.
    Zhang XF (1991) Overseas handbook of raw material properties of explosives. Weapon industry press, BeijingGoogle Scholar
  47. 47.
    Sikder AK, Sikder N (2004) J Hazard Mater 112:1–15CrossRefGoogle Scholar
  48. 48.
    Simpson RL, Urtiew PA, Ornellas DL et al (1997) Propellants, Explos, Pyrotech 22(6):249–255CrossRefGoogle Scholar
  49. 49.
    Eaton Philip E, Gilardi Richard L, Zhang Mao-Xi (2000) Adv Mater 12(15):1143–1148CrossRefGoogle Scholar
  50. 50.
    Rice BM, Sahu S, Owens FJ (2002) J Mol Struct (theochem) 583:69–72CrossRefGoogle Scholar
  51. 51.
    Li J (2010) J Phys Chem B 114(6):2198–2202CrossRefGoogle Scholar
  52. 52.
    Dong J (2005) Study on the structure and sensitivity of nitro explosives. Sichuan University, ChengduGoogle Scholar
  53. 53.
    Murray JS, Politzer P (1990) In: Bulusu SN (ed) Chemistry and physics of energetic materials. Kluwer Academic Publisher, Dordrecht, pp 157–173CrossRefGoogle Scholar
  54. 54.
    Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106:1770–1783CrossRefGoogle Scholar
  55. 55.
    Zeman S (2007) Sensitivities of high energy compounds. Struct Bonding (Berl) 125:195–271CrossRefGoogle Scholar
  56. 56.
    Storm CB, Stine JR, Kramer JF (1990) Sensitivity relationships in energetic materials. In: Bulusu SN (ed) Chemistry and physics of energetic materials, ch. 27. Kluwer, Dordrecht, pp 605–639CrossRefGoogle Scholar
  57. 57.
    Politzer P, Murray JS (2016) Propellants, Explos, Pyrotech 41:414–425CrossRefGoogle Scholar
  58. 58.
    Politzer P, Murray JS (2016) Struct Chem 27:401–408CrossRefGoogle Scholar
  59. 59.
    Politzer P, Murray JS (2015) J Mol Model 21:262–272CrossRefGoogle Scholar
  60. 60.
    Keshavarz MH, Pouretedal HR (2005) J Hazard Mater 124(s 1–3):27–33CrossRefGoogle Scholar
  61. 61.
    Zhong YP, Hu YD, Jiang HZ (1991) Performance manual of overseas explosives. Weapon Industry Press, BeijingGoogle Scholar
  62. 62.
    Kamlet MJ, Adolph HG (1979) Propellants Explos 4(2):30–34CrossRefGoogle Scholar
  63. 63.
    Song HJ (2004) Quantum chemistry study on the sensitivity of explosives. Nanjing University of Science & Technology, NanjingGoogle Scholar
  64. 64.
    Xiao HM, Wang ZY, Yao JM (1985) Acta Chim Sin 43(1):14–18Google Scholar
  65. 65.
    Xiao HM (1993) The molecular orbital theory of nitro compounds. National Defence Industry Press, BeijingGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Material and Chemical EngineeringChuZhou UniversityChuzhouChina
  2. 2.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations