Advertisement

Structural Chemistry

, Volume 27, Issue 6, pp 1693–1701 | Cite as

The R2Pd3Ge5 (R = La–Nd, Sm) germanides: synthesis, crystal structure and symmetry reduction

  • Pavlo Solokha
  • Riccardo Freccero
  • Serena De Negri
  • Davide M. Proserpio
  • Adriana Saccone
Original Research

Abstract

Direct synthesis and structural characterization of a series of polar rare earth palladium germanides of R2Pd3Ge5 composition (R = La–Nd, Sm) is reported. The crystal structure of the Nd representative was determined by single-crystal X-ray diffraction analysis (U2Co3Si5-type, SG: Ibam, oI40, Z = 4, a = 10.1410(6), b = 12.0542(8), c = 6.1318(4) Å, wR 2 = 0.0306, 669 F 2 values, 31 variables). The crystal structures of the other homologues were ensured by powder X-ray diffraction pattern analysis. A smooth variation of the cell dimensions is observed through the rare earth series. The structure of the studied compounds can be interpreted as consisting of a complex three-dimensional [Pd3Ge5]δ− network spaced by the rare earth cations. Within the concept of symmetry reduction, a Bärnighausen tree is used to rationalize the related crystal structures of the RPd2Ge2, RPdGe3 and R2Pd3Ge5 ternary compounds, enriching the large family of the BaAl4 derivatives. Moreover, syntheses with metal fluxes were performed, some of which were successful to obtain large crystals of La2Pd3Ge5 (using Bi as solvent) and Nd2Pd3Ge5 (using Pb as solvent) stoichiometry.

Keywords

Polar intermetallics Germanides Crystal structure Single-crystal X-ray diffraction Flux synthesis 

Notes

Acknowledgments

This research has been funded by the University of Genoa, within PRA 2014 project. DMP acknowledges the Ministry of Education and Science of Russia (Grant 14.B25.31.0005).

Supplementary material

11224_2016_812_MOESM1_ESM.txt (20 kb)
Supplementary material 1 (TXT 19 kb)
11224_2016_812_MOESM2_ESM.docx (1.6 mb)
Supplementary material 2 (DOCX 1605 kb)

References

  1. 1.
    Villars P, Cenzual K (2014) Pearson’s crystal data—crystal structure database for inorganic compounds. ASM International, Materials Park, OhioGoogle Scholar
  2. 2.
    Venturini G, Méot Meyer M, Marêché JF, Malaman B, Roques B (1986) Mat Res Bull 21:33–39CrossRefGoogle Scholar
  3. 3.
    Venturini G, Malaman B, Roques B (1989) J Less Common Met 152:51–66CrossRefGoogle Scholar
  4. 4.
    Ohtsu F, Fukuoka H, Yamanaka S (2009) J Alloys Compd 487:712–715CrossRefGoogle Scholar
  5. 5.
    Anand VK, Anupam, Hossain Z, Ramakrishnan S, Thamizhavel A, Adroja DT (2012) J Magn Magn Mater 324(16):2483–2487CrossRefGoogle Scholar
  6. 6.
    Kaczorowski D, Pikul AP, Burkhardt U, Schmidt M, Ślebarski A, Szajek A, Werwiński M, Grin Yu (2010) J Phys Condens Matter 22:215601CrossRefGoogle Scholar
  7. 7.
    DE Bugaris, Sturza M, Han F, Im J, Chung DY, Freeman AJ, Kanatzidis MG (2015) Eur J Inorg Chem 12:2164–2172CrossRefGoogle Scholar
  8. 8.
    Singh Y, Ramakrishnan S (2004) Phys. Rev B 69:174423CrossRefGoogle Scholar
  9. 9.
    Fedyna MF, Pecharskii VK, Bodak OI (1987) Inorg Mater 23:504–508Google Scholar
  10. 10.
    Salamakha PS (1997) J Alloys Compd 255:209–220CrossRefGoogle Scholar
  11. 11.
    Layek S, Anand VK, Hossain Z (2009) J Magn Magn Mater 321:3447–3452CrossRefGoogle Scholar
  12. 12.
    Anand VK, Hossain Z, Geibel C (2008) Phys. Rev B 77:184407CrossRefGoogle Scholar
  13. 13.
    Feyerherm R, Becker B, Collins MF, Mydosh J, Nieuwenhuys GJ, Ramakrishnan S (1998) Phys B 241–243:643–645Google Scholar
  14. 14.
    Anand VK, Thamizhavel A, Ramakrishnan S, Hossain Z (2012) J Phys Condens Matter 24:456003CrossRefGoogle Scholar
  15. 15.
    Barakatova ZM, Seropegin YD, Bodak OI, Belan BD (1995) Russ Metall 1:150–154Google Scholar
  16. 16.
    Salvador JR, Gour JR, Bilc D, Mahanti SD, Kanatzidis MG (2004) Inorg Chem 43:1403–1410CrossRefGoogle Scholar
  17. 17.
    Tobash PH, Bobev S, Thompson JD, Sarrao JL (2009) J Alloys Compd 488:533–537CrossRefGoogle Scholar
  18. 18.
    Sheldrick GM (1996) SADABS: Siemens area detector absorption correction software. University of Göttingen, GöttingenGoogle Scholar
  19. 19.
    Kraus W, Nolze G (1996) J Appl Crystallogr 29:301–303CrossRefGoogle Scholar
  20. 20.
    Schwarzenbach D (1996) LATCON: refine lattice parameters. University of Lausanne, LausanneGoogle Scholar
  21. 21.
    Voßwinkel D, Pöttgen R (2013) Z Naturforsch 68b:301–305Google Scholar
  22. 22.
    Petricek V, Dusek M, Palatinus L (2014) Z Kristallogr 229(5):345–352Google Scholar
  23. 23.
    Sheldrick GM (2008) Acta Crystallogr A 64:112CrossRefGoogle Scholar
  24. 24.
    Spek AL (2002) PLATON, a multipurpose crystallographic tool. Utrecht University, UtrechtGoogle Scholar
  25. 25.
    Shannon RD (1976) Acta Cryst 32:751CrossRefGoogle Scholar
  26. 26.
    Chevalier B, Lejay P, Etourneau J, Vlasse M, Hagenmuller P (1982) Mat Res Bull 17:1211–1220CrossRefGoogle Scholar
  27. 27.
    Chabot B, Parthè E (1984) J Less Common Met 97:285–290CrossRefGoogle Scholar
  28. 28.
    Chabot B, Parthè E (1985) J Less Common Met 106:53–59CrossRefGoogle Scholar
  29. 29.
    Zhuravleva MA, Kanatzidis MG (2003) Z Naturforsch 58b:649–657Google Scholar
  30. 30.
    Emsley J (1999) The elements. Oxford University Press, OxfordGoogle Scholar
  31. 31.
    Wondratschek H, Müller U (2004) International Tables for Crystallography, Vol. A1, Symmetry relations between space groups. Kluwer Academic Publishers, DordrechtGoogle Scholar
  32. 32.
    Bärnighausen H (1980) Commun Math Comput Chem 9:139–175Google Scholar
  33. 33.
    Müller U (2013) Symmetry relationships between crystal structures. Applications of crystallographic group theory in crystal chemistry. Oxford University Press, OxfordCrossRefGoogle Scholar
  34. 34.
    Müller U (2006) Inorganic structural chemistry, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  35. 35.
    Kussmann D, Pöttgen R, Rodewald UC, Rosenhahn C, Mosel BD, Kotzyba G, Künnen B (1999) Z Naturforsch 54b:1155–1164Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Dipartimento di Chimica e Chimica IndustrialeUniversità degli Studi di GenovaGenovaItaly
  2. 2.Dipartimento di ChimicaUniversità degli Studi di MilanoMilanoItaly
  3. 3.Samara Center for Theoretical Materials Science (SCTMS)Samara State UniversitySamaraRussia

Personalised recommendations