Advertisement

Structural Chemistry

, Volume 27, Issue 6, pp 1685–1692 | Cite as

Bergman, Bergman-based and 63-atom nanoclusters in intermetallics

  • T. G. Akhmetshina
  • V. A. BlatovEmail author
Original Research

Abstract

In this work, we apply the nanocluster method to analyze all known intermetallics containing two-shell nanoclusters with icosahedral core. Using the ToposPro program package, we have found all intermetallics with two-shell nanoclusters as building units or local configurations. We have analyzed in more details Bergman, Bergman-based and two types of icosahedral-based 63-atom nanoclusters, which have been discovered for the first time using the ToposPro nanoclustering procedure. Simplification of the nanocluster representations to their underlying nets revealed widespread topologies such as body-centered cubic (bcu-x), face-centered cubic (fcu) and hexagonal primitive (hex). We have performed topological analysis of these intermetallics in terms of local and overall binding of clusters. The statistical data on the chemical composition of the nanoclusters are presented; the ways of local binding of nanoclusters and the topology of the corresponding underlying nets are determined and classified.

Keywords

Intermetallics Nanocluster model Icosahedral clusters Bergman clusters 

Notes

Acknowledgments

The authors are grateful to the Russian Government (Grant 14.B25.31.0005) for support.

Supplementary material

11224_2016_804_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1090 kb)

References

  1. 1.
    Nyman H, Andersson S (1979) Acta Cryst A35:580–583CrossRefGoogle Scholar
  2. 2.
    Lord EA, Mackay AL, Ranganathan S (2006) New geometries for new materials. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Shevchenko V. Ya., Blatov V. A., Ilyushin G. D. (2009) Struct Chem 20: 975 − 982Google Scholar
  4. 4.
    Blatov VA, Shevchenko AP, Proserpio DM (2014) Cryst Growth Des 14: 3576. http://topospro.com
  5. 5.
    Blatov VA, Ilyushin GD, Proserpio DM (2010) Inorg Chem 49:1811–1818CrossRefGoogle Scholar
  6. 6.
    Pankova AA, Akhmetshina TG, Blatov VA, Proserpio DM (2015) Inorg Chem 54:6616–6630CrossRefGoogle Scholar
  7. 7.
    Blatov VA (2012) Struct Chem 23:955–963CrossRefGoogle Scholar
  8. 8.
    Steurer W, Deloudi S (2008) Acta Cryst A64:1–11CrossRefGoogle Scholar
  9. 9.
    Shevchenko VY, Blatov VA, Ilyushin GD (2013) Glass Phys Chem 39:229–234CrossRefGoogle Scholar
  10. 10.
    Belsky A, Hellenbrandt M, Karen VL, Luksch P (2002) Acta Cryst B58:364–369CrossRefGoogle Scholar
  11. 11.
    Villars P, Cenzual K (2009) Pearson’s crystal data crystal structure database for inorganic compounds (on CD-ROM). ASM International, Materials Park, OHGoogle Scholar
  12. 12.
    Frank-Cordier U, Cordier G, Schäfer H (1982) Z Naturforsch 37:119–127Google Scholar
  13. 13.
    Li B, Corbett JD (2003) Inorg Chem 42:8768–8772CrossRefGoogle Scholar
  14. 14.
    Van der Kraan AM, Buschow KHJ (1986) Phys B 138:55–62CrossRefGoogle Scholar
  15. 15.
    O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM (2008) Acc Chem Res 41: 1782–1789. http://rcsr.anu.edu.au/
  16. 16.
    Brandon JK, Pearson WB, Riley PW, Chieh C, Stokhuyzen R (1977) Acta Cryst B33:1088CrossRefGoogle Scholar
  17. 17.
    Komura Y, Sly WG, Shoemaker DP (1960) Acta Cryst 13:575CrossRefGoogle Scholar
  18. 18.
    Otto G (1968) Z Phys 215:323–334CrossRefGoogle Scholar
  19. 19.
    Cromer DT, Larson AC (1959) Acta Cryst 12:855–859CrossRefGoogle Scholar
  20. 20.
    Boulineau A, Joubert JM, Černy R (2006) J Solid State Chem 179:3385–3393CrossRefGoogle Scholar
  21. 21.
    Conrad M, Harbrecht B (2007) Philos Mag Lett 87:493–503CrossRefGoogle Scholar
  22. 22.
    Blatov VA, Ilyushin GD, Proserpio DM (2011) Inorg Chem 50:5714–5724CrossRefGoogle Scholar
  23. 23.
    Todorov E, Sevov SC (2000) J Solid State Chem 149:419–427CrossRefGoogle Scholar
  24. 24.
    Zhen-Chao D, Corbett DJ (1995) J Am Chem Soc 117:6447–6455CrossRefGoogle Scholar
  25. 25.
    Mizusaki S, Kawamura N, Taniguchi T, Nagata Y, Ozawa TC, Sato A, Noro Y, Samata HJ (2010) Magn Magn Mater 322:L19–L24CrossRefGoogle Scholar
  26. 26.
    Johnson I, Schablaske R, Tani B, Anderson K (1964) Trans Met Soc AIME 230:1485–1486Google Scholar
  27. 27.
    Tsai AP, Guo JQ, Abe E, Takakura H, Sato TJ (2000) Nature 408:537–538CrossRefGoogle Scholar
  28. 28.
    Gomez CP, Lidin S (2003) Phys Rev B 68:024203CrossRefGoogle Scholar
  29. 29.
    Takakura H, Gomez CP, Yamamoto A, De Boisieu M, Tsai AP (2007) Nat Mater 6:58–63CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Samara Center for Theoretical Materials Science (SCTMS)Samara National Research UniversitySamaraRussia

Personalised recommendations