Structural Chemistry

, Volume 28, Issue 3, pp 867–871 | Cite as

Interaction of the divalent lead cation with cyclosporin A: an experimental and theoretical study

Original Research

Abstract

On the basis of extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Pb2+(aq) + Sr2+(nb) ⇄ Pb2+(nb) + Sr2+(aq) occurring in the two-phase water–nitrobenzene system (1 = cyclosporin A; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (Pb2+, Sr2+) = 0.1 ± 0.1. Further, the stability constant of the Pb2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log β nb (Pb2+) = 9.2 ± 0.2. Finally, applying quantum chemical DFT calculations, the most probable structure of the proven Pb2+ cationic complex species was derived. In the resulting complex, the “central” cation Pb2+ is bound by four bonding interactions to the corresponding four oxygen atoms of the parent cyclosporin A ligand. The interaction energy, E(int), of the considered Pb2+ complex was found to be −1016.3 kJ/mol, confirming also the formation of this complex.

Keywords

Divalent lead cation Cyclosporin A Complexation Extraction and stability constants DFT calculations 

Notes

Acknowledgments

This work was supported by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Project No. 42900/1312/3114 entitled “Environmental Aspects of Sustainable Development of Society,” and by the Czech Ministry of Education, Youth, and Sports (Project MSMT No. 20/2015).

Supplementary material

11224_2015_729_MOESM1_ESM.docx (52 kb)
Supplementary material 1 (DOCX 52 kb)

References

  1. 1.
    Cantrell DA, Smith KA (1984) Science 224:1312CrossRefGoogle Scholar
  2. 2.
    Svarstad H, Bugge HC, Dhillion SS (2000) Biodivers Conserv 9:1521CrossRefGoogle Scholar
  3. 3.
    Borel JF (2002) Wien Klin Wochenschr 114:433Google Scholar
  4. 4.
    Dittmann J, Wenger RM, Kleinkauf H, Lawen A (1994) J Biol Chem 269:2841Google Scholar
  5. 5.
    Hoppert M, Gentzsch C, Schörgendorfer K (2001) Arch Microbiol 176:285CrossRefGoogle Scholar
  6. 6.
    Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984) Science 226:544CrossRefGoogle Scholar
  7. 7.
    Takahashi N, Hayano T, Suzuki M (1989) Nature 337:473CrossRefGoogle Scholar
  8. 8.
    Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX (1989) Nature 337:476CrossRefGoogle Scholar
  9. 9.
    Loosli HR, Kessler H, Oschkinat H, Weber HP, Petcher TJ, Widmer A (1985) Helv Chim Acta 68:682CrossRefGoogle Scholar
  10. 10.
    Weber C, Wider G, von Freyberg B, Traber R, Braun W, Widmer H, Wüthrich K (1991) Biochemistry 30:6563CrossRefGoogle Scholar
  11. 11.
    Fesik SW, Gampe RT Jr, Eaton HL, Gemmecker G, Olejniczak ET, Neri P, Holzmann TF, Egan DA, Edalji R, Simmer R, Helfrich R, Hochlowski J, Jackson M (1991) Biochemistry 30:6574CrossRefGoogle Scholar
  12. 12.
    Wüthrich K, Spitzfaden C, Memmert K, Widmer H, Wider G (1991) FEBS Lett 285:237CrossRefGoogle Scholar
  13. 13.
    Kallen J, Spitzfaden C, Zurini MGM, Wider G, Widmer H, Wüthrich K, Walkinshaw MD (1991) Nature 353:276CrossRefGoogle Scholar
  14. 14.
    Neri P, Meadows R, Gemmecker G, Olejniczak E, Nettesheim D, Logan T, Simmer R, Helfrich R, Holzman T, Severin J, Fesik S (1991) FEBS Lett 294:81CrossRefGoogle Scholar
  15. 15.
    Schreiber SL (1991) Science 251:283CrossRefGoogle Scholar
  16. 16.
    Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Cell 66:807CrossRefGoogle Scholar
  17. 17.
    Hawthorne MF, Young DC, Andrews TD, Howe DV, Pilling RL, Pitts AD, Reintjes M, Warren LF, Wegner PA (1968) J Am Chem Soc 90:879CrossRefGoogle Scholar
  18. 18.
    Makrlík E, Vaňura P (1985) Talanta 32:423CrossRefGoogle Scholar
  19. 19.
    Makrlík E (1992) Collect Czech Chem Commun 57:289CrossRefGoogle Scholar
  20. 20.
    Makrlík E, Hálová J, Kyrš M (1984) Collect Czech Chem Commun 49:39CrossRefGoogle Scholar
  21. 21.
    Makrlík E, Vaňura P, Daňková M (1999) J Radioanal Nucl Chem 240:579CrossRefGoogle Scholar
  22. 22.
    Makrlík E, Vaňura P (2010) J Radioanal Nucl Chem 285:683CrossRefGoogle Scholar
  23. 23.
    Makrlík E, Böhm S, Vaňura P (2015) J Mol Struct 1100:184CrossRefGoogle Scholar
  24. 24.
    Makrlík E, Toman P, Vaňura P (2013) Monatsh Chem 144:1461CrossRefGoogle Scholar
  25. 25.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  26. 26.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  27. 27.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox J E, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc, WallingfordGoogle Scholar
  28. 28.
    Kříž J, Dybal J, Makrlík E, Vaňura P, Moyer BA (2011) J Phys Chem B 115:7578CrossRefGoogle Scholar
  29. 29.
    Toman P, Makrlík E, Vaňura P (2012) Monatsh Chem 143:985CrossRefGoogle Scholar
  30. 30.
    Makrlík E, Toman P, Vaňura P (2013) Monatsh Chem 144:919CrossRefGoogle Scholar
  31. 31.
    Makrlík E, Záliš S, Vaňura P, Sedláková Z (2013) Struct Chem 24:2149CrossRefGoogle Scholar
  32. 32.
    Makrlík E, Toman P, Vaňura P, Moyer BA (2014) Struct Chem 25:847CrossRefGoogle Scholar
  33. 33.
    Turi L, Dannenberg JJ (1993) J Phys Chem 97:2488CrossRefGoogle Scholar
  34. 34.
    Rode JE, Dobrowolski JC (2002) Chem Phys Lett 360:123CrossRefGoogle Scholar
  35. 35.
    Makrlík E, Vaňura P, Selucký P (2008) Monatsh Chem 139:597CrossRefGoogle Scholar
  36. 36.
    Makrlík E, Vaňura P (2011) J Radioanal Nucl Chem 288:49CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Emanuel Makrlík
    • 1
  • Stanislav Böhm
    • 2
  • Petr Vaňura
    • 2
  1. 1.Faculty of Environmental SciencesCzech University of Life SciencesPrague 6Czech Republic
  2. 2.University of Chemistry and Technology, PraguePrague 6Czech Republic

Personalised recommendations