Structural Chemistry

, Volume 26, Issue 5–6, pp 1467–1471 | Cite as

Structural characterization of a complex derived from lead(II) perchlorate and acridono-18-crown-6 ether

  • Tamás Németh
  • Ádám Golcs
  • Ibolya Leveles
  • Tünde Tóth
  • Beáta G. Vértessy
  • Péter HuszthyEmail author
Original Research


This paper describes the X-ray crystal structure of a complex of acridono-18-crown-6 ether 3 and lead(II) perchlorate. The structure shows a π–π bonded heterodimer in the crystal. One part of the dimer moves to 9-hydroxyacridine tautomeric form upon lead(II) complexation, in which the lead(II) ion is eight-coordinated and fits well into the cavity of the macrocycle. The other part of the dimer stays in the 9(10H)-acridone tautomeric form, which favors water complexation. The average bond distance of the two tricyclic units (3.5 Å) indicates a strong π–π interaction. The X-ray studies also revealed a cation–π interaction between lead(II) and the electron-rich acridone moiety.


Crown ether Acridone Lead(II) complexation X-ray analysis π–π interaction Cation–π interaction 



Financial supports of the Hungarian Scientific Research Fund (OTKA K112289, K109486 and NK84008), the CRP/HUN14-01 ICGEB Research Grant and the New Széchenyi Development Plan (TÁMOP-4.2.1/B-09/1/KMR-2010-0002) are gratefully acknowledged.


  1. 1.
    Ovchinnikov YA (1979) Physico-chemical basis of ion transport through biological membranes: ionophores and ion channels. Eur J Biochem 94:321–336CrossRefGoogle Scholar
  2. 2.
    Hunter CA, Sanders JKM (1990) The nature of π–π interactions. J Am Chem Soc 112:5525–5534CrossRefGoogle Scholar
  3. 3.
    Anslyn EV, Dougherty DA (2005) In: Murdzek J (ed) Modern physical organic chemistry. University Science Books, SausalitoGoogle Scholar
  4. 4.
    Pecsi I, Leveles I, Harmat V, Vertessy BG, Toth J (2010) Aromatic stacking between nucleobase and enzyme promotes phosphate ester hydrolysis in dUTPase. Nucleic Acids Res 38:7179–7186CrossRefGoogle Scholar
  5. 5.
    Mahadevi AS, Sastry GN (2013) Cation−π interaction: its role and relevance in chemistry, biology, and material Science. Chem Rev 113:2100–2138CrossRefGoogle Scholar
  6. 6.
    Nagy GN, Marton L, Contet A, Ozohanics O, Ardelean LM, Révész A, Vékey K, Irimie FD, Vial H, Cerdan R, Vértessy BG (2014) Composite aromatic boxes for enzymatic transformations of quaternary ammonium substrates. Angew Chem Int Ed Engl 53:13471–13476CrossRefGoogle Scholar
  7. 7.
    Desvergne JP, Czarnik AW (eds) (1997) Chemosensors of ion and molecule recognition NATO ASI Series C. Kluwer, Dordrecht 492 Google Scholar
  8. 8.
    Grant LD (2009) In: Lippmann M (ed) Lead and compounds. Environmental toxicants: human exposures and their health effects, 3rd edn. Wiley, Hoboken. Wiley-InterscienceGoogle Scholar
  9. 9.
    Needleman H (2004) Lead poisoning. Annu Rev Med 55:209–222CrossRefGoogle Scholar
  10. 10.
    Dapul H, Laraque D (2014) Lead poisoning in children. Adv Pediatr 61:313–333CrossRefGoogle Scholar
  11. 11.
    Bazzicalupi C, Bencini A, Fusi V, Giorgi C, Paoletti P, Valtancoli B (1999) Lead complexation by novel phenanthroline-containing macrocycles. J Chem Soc Dalton 3:393–400CrossRefGoogle Scholar
  12. 12.
    Aguilar JC, de San Miguel ER, de Gyves J, Bartsch RA, Kim M (2001) Design, synthesis and evaluation of diazadibenzocrown ethers as Pb2+ extractants and carriers in plasticized cellulose triacetate membranes. Talanta 54:1195–1204CrossRefGoogle Scholar
  13. 13.
    Esteban D, Avecilla F, Platas-Iglesias C, Mahía J, de Blas A, Rodríguez-Blas T (2002) Lead(II) complexes with macrocyclic receptors derived from 4,13-diaza-18-crown-6. Inorg Chem 41:4337–4347CrossRefGoogle Scholar
  14. 14.
    Esteban D, Avecilla F, Platas-Iglesias C, de Blas A, Rodríguez-Blas T (2003) Synthesis and structural characterisation of lead(II) isothiocyanate complexes with receptors derived from 1,10-diaza-15-crown-5. Polyhedron 22:2709–2717CrossRefGoogle Scholar
  15. 15.
    Grzegorzewski P, Nikonowicz A, Jurczak J (2004) Complexation of Pb2+ by macrocyclic benzo- and pyridinophanes. J Incl Phenom 49:97–100CrossRefGoogle Scholar
  16. 16.
    Lee SH, Kim JY, Kim SK, Lee JH, Kim JS (2004) Pyrene-appended calix[4] crowned logic gates involving normal and reverse PET: NOR, XNOR and INHIBIT. Tetrahedron 60:5171–5176CrossRefGoogle Scholar
  17. 17.
    Buschmann HJ, Schollmeyer E (2010) Stability constants and thermodynamic data for the complexation of Pb2+ by noncyclic, macrocyclic and macrobicyclic ligands in aqueous solution. J Coord Chem 55:287–291CrossRefGoogle Scholar
  18. 18.
    Farina P, Latter T, Levason W, Reid G (2013) Lead(II) tetrafluoroborate and hexafluorophosphate complexes with crown ethers, mixed O/S- and O/Se-donor macrocycles and unusual [BF4] and [PF6] coordination. Dalton T 42:4714–4724CrossRefGoogle Scholar
  19. 19.
    Szalay L, Farkas V, Vass E, Hollósi M, Móczár I, Pintér Á, Huszthy P (2004) Synthesis and selective lead(II) binding of achiral and enantiomerically pure chiral acridono-18-crown-6 ether type ligands. Tetrahedron Asymmetry 15:1487–1493CrossRefGoogle Scholar
  20. 20.
    Németh T, Kormos A, Tóth T, Balogh G, Huszthy P (2015) Synthesis and cation binding of acridono-18-crown-6 ether type ligands. Monatsh Chem 146:1291–1297CrossRefGoogle Scholar
  21. 21.
    Huszthy P, Köntös Z, Vermes B, Pintér Á (2001) Synthesis of novel fluorescent acridono- and thioacridono-18-crown-6 ligands. Tetrahedron 57:4967–4975CrossRefGoogle Scholar
  22. 22.
    CrysAlisPRO (2011) Oxford diffraction. Agilent Technologies UK Ltd, YarntonGoogle Scholar
  23. 23.
    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 42:339–341CrossRefGoogle Scholar
  24. 24.
    Sheldrick GM (1997) SHELX97, programs for crystal structure analysis. University of Gottingen, GottingenGoogle Scholar
  25. 25.
    Huszthy P, Vermes B, Báthori N, Czugler M (2003) Synthesis and X-ray crystallographic studies of novel proton-ionizable nitro- and halogen-substituted acridono-18-crown-6 chromo- and fluorogenic ionophores. Tetrahedron 59:9371–9377CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tamás Németh
    • 1
  • Ádám Golcs
    • 1
  • Ibolya Leveles
    • 2
    • 3
  • Tünde Tóth
    • 1
  • Beáta G. Vértessy
    • 2
    • 3
  • Péter Huszthy
    • 1
    Email author
  1. 1.Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Institute of Enzymology, RCNSHungarian Academy of SciencesBudapestHungary
  3. 3.Department of Applied Biotechnology and Food SciencesBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations