Structural Chemistry

, Volume 26, Issue 5–6, pp 1425–1432 | Cite as

Exploring the role of the phage-specific insert of bacteriophage Φ11 dUTPase

  • Kinga NyíriEmail author
  • Veronika Papp-Kádár
  • Judit E. Szabó
  • Veronika Németh
  • Beáta G. VértessyEmail author
Original Research


dUTPases are essential for maintaining genome integrity. Recently, in the case of a dUTPase from a Staphylococcal phage, another different physiological function was also suggested. Namely, it was shown that dUTPase from the Staphylococcus aureus bacteriophage Ф11 is capable of binding to the Staphylococcal Stl repressor protein. This binding interferes with the function of Stl. In the present study, we investigated the putative role of a phage dUTPase-specific peptide segment in the interaction of dUTPase with Stl and in impeding Stl–DNA complex formation. We show that dUTPase from Mycobacterium tuberculosis that lacks the phage-specific insert is also capable of disrupting the complexation between Stl and DNA. Hence, the insert segment is not essential for perturbation of the Stl function. However, we also demonstrate that in case of the phage dUTPase, the insert-lacking construct is deficient in perturbation of Stl activity. These findings clearly indicate that the phage-specific insert has a well-defined role only in the context of the phage dUTPase.


dUTPase Non-canonical insert Protein–protein interaction Protein–DNA interaction Staphylococcal repressor 



Authors thank for the support of Hungarian Scientific Research Fund OTKA [NK 84008, K109486]; Baross Program of the New Hungary Development Plan [3DSTRUCT, OMFB-00266/2010 REG-KM-09-1-2009-0050]; Hungarian Academy of Sciences ([TTK IF-28/2012]; MedinProt program); the ICGEB Research Grant to BGV; and the European Commission FP7 Biostruct-X project [Contract No. 283570]. Funding for open access charge: Hungarian Academy of Sciences.


  1. 1.
    Vértessy BG, Tóth J (2009) Keeping uracil out of DNA: physiological role, structure and catalytic mechanism of dUTPases. Acc Chem Res 42:97–106CrossRefGoogle Scholar
  2. 2.
    Persson R, Cedergren-Zeppezauer ES, Wilson KS (2001) Homotrimeric dUTPases; structural solutions for specific recognition and hydrolysis of dUTP. Curr Protein Pept Sci 2:287–300CrossRefGoogle Scholar
  3. 3.
    Taylor AF, Weiss B (1982) Role of exonuclease III in the base excision repair of uracil-containing DNA. J Bacteriol 151:351–357Google Scholar
  4. 4.
    el-Hajj HH, Zhang H, Weiss B (1988) Lethality of a dut (deoxyuridine triphosphatase) mutation in Escherichia coli. J Bacteriol 170:1069–1075Google Scholar
  5. 5.
    Dengg M, Garcia-Muse T, Gill SG et al (2006) Abrogation of the CLK-2 checkpoint leads to tolerance to base-excision repair intermediates. EMBO Rep 7:1046–1051CrossRefGoogle Scholar
  6. 6.
    Siaud N, Dubois E, Massot S et al (2010) The SOS screen in Arabidopsis: a search for functions involved in DNA metabolism. DNA Repair (Amst) 9:567–578CrossRefGoogle Scholar
  7. 7.
    Dubois E, Córdoba-Cañero D, Massot S et al (2011) Homologous recombination is stimulated by a decrease in dUTPase in Arabidopsis. PLoS ONE 6:e18658CrossRefGoogle Scholar
  8. 8.
    Castillo-Acosta VM, Aguilar-Pereyra F, García-Caballero D et al (2013) Pyrimidine requirements in deoxyuridine triphosphate nucleotidohydrolase deficient Trypanosoma brucei mutants. Mol Biochem Parasitol 187:9–13CrossRefGoogle Scholar
  9. 9.
    Muha V, Horváth A, Békési A et al (2012) Uracil-containing DNA in Drosophila: stability, stage-specific accumulation, and developmental involvement. PLoS Genet 8:e1002738CrossRefGoogle Scholar
  10. 10.
    Nagy GN, Leveles I, Vértessy BG (2014) Preventive DNA repair by sanitizing the cellular (deoxy)nucleoside triphosphate pool. FEBS J 281:4207–4223CrossRefGoogle Scholar
  11. 11.
    Hemsworth GR, González-Pacanowska D, Wilson KS (2013) On the catalytic mechanism of dimeric dUTPases. Biochem J 456:81–88CrossRefGoogle Scholar
  12. 12.
    Prasad GS, Stura EA, Mcree DE et al (1996) Crystal structure of dUTP pyrophosphatase from feline immunodeficiency virus. Protein Sci 5:2429–2437CrossRefGoogle Scholar
  13. 13.
    Dauter Z, Persson R, Rosengren AM et al (1999) Crystal structure of dUTPase from Equine Infectious Anaemia Virus; active site metal binding in a substrate analogue complex. J Mol Biol 285:655–673CrossRefGoogle Scholar
  14. 14.
    Samal A, Schormann N, Cook WJ et al (2007) Structures of vaccinia virus dUTPase and its nucleotide complexes. Acta Crystallogr D Biol Crystallogr 63:571–580CrossRefGoogle Scholar
  15. 15.
    Németh-Pongrácz V, Barabás O, Fuxreiter M et al (2007) Flexible segments modulate co-folding of dUTPase and nucleocapsid proteins. Nucleic Acids Res 35:495–505CrossRefGoogle Scholar
  16. 16.
    Takács E, Barabás O, Petoukhov MV et al (2009) Molecular shape and prominent role of beta-strand swapping in organization of dUTPase oligomers. FEBS Lett 583:865–871CrossRefGoogle Scholar
  17. 17.
    Badalucco L, Poudel I, Yamanishi M et al (2011) Crystallization of Chlorella deoxyuridine triphosphatase. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:1599–1602CrossRefGoogle Scholar
  18. 18.
    Leveles I, Németh V, Szabó JE et al (2013) Structure and enzymatic mechanism of a moonlighting dUTPase. Acta Crystallogr D Biol Crystallogr 69:2298–2308CrossRefGoogle Scholar
  19. 19.
    Tormo-Más MÁ, Donderis J, García-Caballer M et al (2013) Phage dUTPases control transfer of virulence genes by a proto-oncogenic G protein-like mechanism. Mol Cell 49:947–958CrossRefGoogle Scholar
  20. 20.
    Tinkelenberg B, Fazzone W, Lynch FJ, Ladner RD (2003) Identification of sequence determinants of human nuclear dUTPase isoform localization. Exp Cell Res 287:39–46CrossRefGoogle Scholar
  21. 21.
    Békési A, Zagyva I, Hunyadi-Gulyás E et al (2004) Developmental regulation of dUTPase in Drosophila melanogaster. J Biol Chem 279:22362–22370CrossRefGoogle Scholar
  22. 22.
    Muha V, Zagyva I, Venkei Z et al (2009) Nuclear localization signal-dependent and -independent movements of Drosophila melanogaster dUTPase isoforms during nuclear cleavage. Biochem Biophys Res Commun 381:271–275CrossRefGoogle Scholar
  23. 23.
    Merényi G, Kónya E, Vértessy BG (2010) Drosophila proteins involved in metabolism of uracil-DNA possess different types of nuclear localization signals. FEBS J 277:2142–2156CrossRefGoogle Scholar
  24. 24.
    Róna G, Marfori M, Borsos M et al (2013) Phosphorylation adjacent to the nuclear localization signal of human dUTPase abolishes nuclear import: structural and mechanistic insights. Acta Crystallogr D Biol Crystallogr 69:2495–2505CrossRefGoogle Scholar
  25. 25.
    Róna G, Pálinkás HL, Borsos M et al (2014) NLS copy-number variation governs efficiency of nuclear import–case study on dUTPases. FEBS J 281:5463–5478CrossRefGoogle Scholar
  26. 26.
    Chu R, Lin Y, Rao MS, Reddy JK (1996) Cloning and identification of rat Deoxyuridine Triphosphatase as an inhibitor of peroxisome proliferator-activated receptor alpha. J Biol Chem 271:27670–27676CrossRefGoogle Scholar
  27. 27.
    Fiser A, Vértessy BG (2000) Altered subunit communication in subfamilies of trimeric dUTPases. Biochem Biophys Res Commun 279:534–542CrossRefGoogle Scholar
  28. 28.
    Kovári J, Barabás O, Takács E et al (2004) Altered active site flexibility and a structural metal-binding site in eukaryotic dUTPase: kinetic characterization, folding, and crystallographic studies of the homotrimeric Drosophila enzyme. J Biol Chem 279:17932–17944CrossRefGoogle Scholar
  29. 29.
    Bergman A-C, Björnberg O, Nord J et al (1994) The protein p30, encoded at the gag-pro junction of Mouse Mammary Tumor Virus, is a dUTPase fused with a nucleocapsid protein. Virology 204:420–421CrossRefGoogle Scholar
  30. 30.
    Barabás O, Rumlová M, Erdei A et al (2003) dUTPase and nucleocapsid polypeptides of the Mason-Pfizer Monkey Virus form a fusion protein in the virion with homotrimeric organization and low catalytic efficiency. J Biol Chem 278:38803–38812CrossRefGoogle Scholar
  31. 31.
    Pecsi I, Hirmondo R, Brown AC et al (2012) The dUTPase enzyme is essential in Mycobacterium smegmatis. PLoS ONE 7:e37461CrossRefGoogle Scholar
  32. 32.
    Whittingham JL, Leal I, Nguyen C et al (2005) dUTPase as a platform for antimalarial drug design: structural basis for the selectivity of a class of nucleoside inhibitors. Structure 13:329–338CrossRefGoogle Scholar
  33. 33.
    Tormo-Más MÁ, Mir-Sanchis I, Shrestha A et al (2010) Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands. Nature 465:779–782CrossRefGoogle Scholar
  34. 34.
    Szabó JE, Németh V, Papp-Kádár V et al (2014) Highly potent dUTPase inhibition by a bacterial repressor protein reveals a novel mechanism for gene expression control. Nucleic Acids Res 42:11912–11920CrossRefGoogle Scholar
  35. 35.
    Takács E, Grolmusz VK, Vértessy BG (2004) A tradeoff between protein stability and conformational mobility in homotrimeric dUTPases. FEBS Lett 566:48–54CrossRefGoogle Scholar
  36. 36.
    Vértessy BG, Zalud P, Nyman PO, Zeppenzauer M (1994) Identification of tyrosine as a functional residue in the active site of Escherichia coli dUTPase. Biochim Biophys Acta 1205:146–150CrossRefGoogle Scholar
  37. 37.
    Pecsi I, Leveles I, Harmat V et al (2010) Aromatic stacking between nucleobase and enzyme promotes phosphate ester hydrolysis in dUTPase. Nucleic Acids Res 38:7179–7186CrossRefGoogle Scholar
  38. 38.
    Leveles I, Róna G, Zagyva I et al (2011) Crystallization and preliminary crystallographic analysis of dUTPase from the φ11 helper phage of Staphylococcus aureus. Acta Crystallogr Sect F 67:1411–1413CrossRefGoogle Scholar
  39. 39.
    Varga B, Migliardo F, Takacs E et al (2008) Experimental study on dUTPase-inhibitor candidate and dUTPase/disaccharide mixtures by PCS and ENS. J Mol Struct 886:128–135CrossRefGoogle Scholar
  40. 40.
    Varga B, Barabás O, Takács E et al (2008) Active site of mycobacterial dUTPase: structural characteristics and a built-in sensor. Biochem Biophys Res Commun 373:8–13CrossRefGoogle Scholar
  41. 41.
    Orosz F, Kovács J, Löw P et al (1997) Interaction of a new bis-indol derivative, KAR-2 with tubulin and its antimitotic activity. Br J Pharmacol 121:947–954CrossRefGoogle Scholar
  42. 42.
    Hirmondó R, Szabó JE, Nyíri K et al (2015) Cross-species inhibition of dUTPase via the Staphylococcal Stl protein perturbs dNTP pool and colony formation in Mycobacterium. DNA Repair (Amst) 30:21–27CrossRefGoogle Scholar
  43. 43.
    Mir-Sanchis I, Martínez-Rubio R, Martí M et al (2012) Control of Staphylococcus aureus pathogenicity island excision. Mol Microbiol 85:833–845CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kinga Nyíri
    • 1
    • 2
    Email author
  • Veronika Papp-Kádár
    • 1
    • 2
  • Judit E. Szabó
    • 1
    • 2
  • Veronika Németh
    • 1
  • Beáta G. Vértessy
    • 1
    • 2
    Email author
  1. 1.Institute of Enzymology, RCNSHungarian Academy of SciencesBudapestHungary
  2. 2.Department BiotechnologyBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations