Gas-phase electron diffraction from laser-aligned molecules

Abstract

Electron diffraction is a valuable tool to capture structural information from molecules in the gas phase. However, the information contained in the diffraction patterns is limited due to the random orientation of the molecules. Additional structural information can be retrieved if the molecules are aligned. Molecules can be impulsively aligned with femtosecond laser pulses, producing a transient alignment. The alignment persists only for a time on the order of a picosecond, so a pulsed electron gun is needed to record the diffraction patterns. In this manuscript, we describe the alignment process and show the changes in the diffraction pattern as a result of alignment. Carbon disulfide, a linear molecule, was chosen as a model molecule for these experiments. We have also experimentally investigated the temporal evolution of the alignment and the dependence on the laser pulse intensity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Hargittai I, Hargittai M (1988) Stereochemical applications of gas-phase electron diffraction. VCH Publishers, New York

    Google Scholar 

  2. 2.

    Varga Z, Vest B, Schwerdtfeger P, Hargittai M (2010) Inorg Chem 49:2816–2821

    CAS  Article  Google Scholar 

  3. 3.

    Hnyk D, Wann DA, Holub J, Samdal S, Rankin DWH (2011) Dalton Trans 40:5734–5737

    CAS  Article  Google Scholar 

  4. 4.

    Schwabedissen J, Lane PD, Masters SL, Hassler K, Wann DA (2014) Dalton Trans 43:10175–10182

    CAS  Article  Google Scholar 

  5. 5.

    Kolesnikova IN, Dorofeeva OV, Karasev NM, Oberhammer H, Shishkov IF (2014) J Mol Struct 1074:196–200

    CAS  Article  Google Scholar 

  6. 6.

    Wu Z, Li H, Zhu B, Zeng X, Hayes SA, Mitzel NW, Beckers H, Berger RJF (2015) Phys Chem Chem Phys 17:8784–8791

    CAS  Article  Google Scholar 

  7. 7.

    Zhabanov YA, Zakharov AV, Giricheva NI, Shlykov SA, Koifman OI, Girichev GV (2015) J Mol Struct 1092:104–112

    CAS  Article  Google Scholar 

  8. 8.

    Romenesko DJ, Wong TC, Bartell L (1975) In: Sim GA, Sutton LE (eds) Molecular structure by diffraction methods. The Chemical Society, London

    Google Scholar 

  9. 9.

    Blom R, Cradock S, Davidson SL, Rankin DWH (1991) J Mol Struct 245:369–377

    CAS  Article  Google Scholar 

  10. 10.

    Davis MJ, Rankin DWH, Cradock S (1990) J Mol Struct 238:273–287

    CAS  Article  Google Scholar 

  11. 11.

    Klimkowski V, Ewbank JD, Van Alsenoy C, Scarsdale JN, Schäfer L (1982) J Am Chem Soc 104:1476–1480

    CAS  Article  Google Scholar 

  12. 12.

    Mitzel NW, Rankin DWH (2003) Dalton Trans 19:3650–3662

    Article  Google Scholar 

  13. 13.

    Spence JCH, Doak RB (2004) Phys Rev Lett 92:198102

    CAS  Article  Google Scholar 

  14. 14.

    Pabst S, Ho PJ, Santra R (2010) Phys Rev A 81:043425

    Article  Google Scholar 

  15. 15.

    Hensley CJ, Yang J, Centurion M (2012) Phys Rev Lett 109:133202

    Article  Google Scholar 

  16. 16.

    Yang J, Makhija V, Kumarappan V, Centurion M (2014) Struct Dyn 1:044101

    Article  Google Scholar 

  17. 17.

    Stapelfeldt H, Seideman T (2003) Rev Mod Phys 75:543–557

    CAS  Article  Google Scholar 

  18. 18.

    Hoshina K, Yamanouchi K, Takashi T, Ose Y, Todokoro H (2003) J Chem Phys 118:6211–6221

    CAS  Article  Google Scholar 

  19. 19.

    Reckenthaeler PR, Centurion M, Fuss W, Krausz F, Fill EE (2009) Phys Rev Lett 102:213001

    Article  Google Scholar 

  20. 20.

    Centurion M, Reckenthaeler P, Krausz F, Fill E (2010) J Mol Struct 978:141–146

    CAS  Article  Google Scholar 

  21. 21.

    Küpper J, Stern S, Holmegaard L et al (2014) Phys Rev Lett 112:083002

    Article  Google Scholar 

  22. 22.

    Seideman T (2001) J Chem Phys 115:5965–5973

    CAS  Article  Google Scholar 

  23. 23.

    Seideman T, Hamilton E (2005) Adv At Mol Opt Phys 52:289–329

    CAS  Article  Google Scholar 

  24. 24.

    Prince E (2004) International tables for crystallography mathematical, physical and chemical tables. Kluwer, Dordrecht

    Google Scholar 

  25. 25.

    Pullman D, Friedrich B, Herschbach D (1990) J Chem Phys 93:3224–3236

    CAS  Article  Google Scholar 

  26. 26.

    Williamson JC, Zewail AH (1993) Chem Phys Lett 209:10–16

    CAS  Article  Google Scholar 

  27. 27.

    Yang Y, Beck J, Uiterwaal CJ, Centurion M (2015) http://arxiv.org/abs/1410.6429. Accessed 7 July 2015

  28. 28.

    Oudheusden T, Pasmans PLEM, van der Geer SB, de Loos MJ, van der Wiel MJ, Luiten OJ (2010) Phys Rev Lett 105:264801

    Article  Google Scholar 

  29. 29.

    Weathersby SP, Brown G, Centurion M et al (2015) Rev Sci Instrum 86:073702

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0003931.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Centurion.

Additional information

Dedicated to Professor Magdolna Hargittai on the occasion of her 70th birthday.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Centurion, M. Gas-phase electron diffraction from laser-aligned molecules. Struct Chem 26, 1513–1520 (2015). https://doi.org/10.1007/s11224-015-0650-4

Download citation

Keywords

  • Gas electron diffraction
  • Aligned molecules
  • Laser-aligned molecules
  • Ultrafast electron diffraction