Advertisement

Structural Chemistry

, Volume 26, Issue 5–6, pp 1641–1650 | Cite as

Synthesis and structure of tritylium salts

  • Alexander Hinz
  • René Labbow
  • Fabian Reiß
  • Axel SchulzEmail author
  • Katharina Sievert
  • Alexander Villinger
Original Research

Abstract

Several tritylium compounds [Ph3C][A] have been isolated by salt metathesis or halide abstraction reactions starting from Ph3C–X (X = halogen) and Lewis acids in good yields (A = BF4, BCl4, AlCl4, GaCl4, PF6, AsF6, SbF6, SbCl6, CHB11H5Cl6, CHB11Cl11, CHB11H5Br6, CF3COO, CF3SO3, N3). The structures of 15 tritylium salts bearing different types of weakly coordinating anions (A) have been determined. The structures are discussed on the basis of ion pairing versus covalent bond formation and solid-state interactions in comparison with gas-phase data.

Keywords

Tritylium Synthesis Structure Bonding 

Supplementary material

11224_2015_638_MOESM1_ESM.pdf (2.8 mb)
Supplementary material 1 (PDF 2861 kb)

References

  1. 1.
    Henderson GG (1887) J Chem Soc Trans 51:224–228CrossRefGoogle Scholar
  2. 2.
    Horn M, Mayr H (2012) J Phys Org Chem 25:979–988CrossRefGoogle Scholar
  3. 3.
    Walden P (1902) Chem Ber 35:2018–2031CrossRefGoogle Scholar
  4. 4.
    Wieland H (1915) Chem Ber 48:1096–1097CrossRefGoogle Scholar
  5. 5.
    Baeyer A, Villiger V (1902) Chem Ber 35:1189–1201CrossRefGoogle Scholar
  6. 6.
    Gomberg M (1902) Chem Ber 35:2398–2408Google Scholar
  7. 7.
    Gomberg M (1900) J Am Chem Soc 22:757–771CrossRefGoogle Scholar
  8. 8.
    Olah GA (1973) Angew Chem Int Ed 12:173–254CrossRefGoogle Scholar
  9. 9.
    Olah GA (1972) J Am Chem Soc 94:808–820CrossRefGoogle Scholar
  10. 10.
    Plack V, Schmutzler R (1999) Phosphorus, Sulfur Silicon Relat Elem 144:273–276Google Scholar
  11. 11.
    Tschitschibabin AE (1907) Chem Ber 40:3056–3058CrossRefGoogle Scholar
  12. 12.
    Baeyer A, Villiger V (1902) Chem Ber 35:3013–3033CrossRefGoogle Scholar
  13. 13.
    Gomberg M (1902) Chem Ber 35:1822–1840CrossRefGoogle Scholar
  14. 14.
    Hofmann KA, Metzler A, Lecher H (1910) Chem Ber 43:178–183CrossRefGoogle Scholar
  15. 15.
    Kehrmann F, Wentzel F (1901) Chem Ber 34:3815–3819CrossRefGoogle Scholar
  16. 16.
    Meerwein H, van Emster K (1922) Chem Ber 55:2500–2528CrossRefGoogle Scholar
  17. 17.
    Schmidlin J (1907) Chem Ber 40:2316–2329CrossRefGoogle Scholar
  18. 18.
    Walden P (1903) Zeitschrift für Phys Chemie 43:385–464Google Scholar
  19. 19.
    Whitmore FC (1932) J Am Chem Soc 54:3274–3283CrossRefGoogle Scholar
  20. 20.
    Schmidlin J (1908) Chem Ber 41:2471–2479CrossRefGoogle Scholar
  21. 21.
    Schmidlin J (1908) Chem Ber 41:426–430CrossRefGoogle Scholar
  22. 22.
    Tschitschibabin AE (1906) J für Prakt Chem 74:340–344CrossRefGoogle Scholar
  23. 23.
    Krossing I, Raabe I (2004) Angew Chem 116:2116–2142CrossRefGoogle Scholar
  24. 24.
    Smith JC, Ma K, Piers WE, Parvez M, McDonald R (2010) Dalton Trans 39:10256–10263CrossRefGoogle Scholar
  25. 25.
    Kraft A, Trapp N, Himmel D, Bçhrer H, Schlüter P, Scherer H, Krossing I (2012) Chem Eur J 18:9371–9380CrossRefGoogle Scholar
  26. 26.
    Krossing I, Brands H, Feuerhake R, Koenig S (2001) J Fluor Chem 112:83–90CrossRefGoogle Scholar
  27. 27.
    Banert K, Joo Y-H, Rüffer T, Walfort B, Lang H (2007) Angew Chem Int Ed 46:1168–1171CrossRefGoogle Scholar
  28. 28.
    Chen Y-X, Metz MV, Li L, Stern CL, Marks TJ (1998) J Am Chem Soc 120:6287–6305CrossRefGoogle Scholar
  29. 29.
    Lehmann M, Schulz A, Villinger A (2009) Angew Chem Int Ed 48:7444–7447CrossRefGoogle Scholar
  30. 30.
    Finze M, Bernhardt E, Berkei M, Willner H, Hung J, Waymouth RM (2005) Organometallics 24:5103–5109CrossRefGoogle Scholar
  31. 31.
    Schäfer A, Reißmann M, Jung S, Schäfer A, Saak W, Brendler E, Müller T (2013) Organometallics 32:4713–4722CrossRefGoogle Scholar
  32. 32.
    Geis V, Guttsche K, Knapp C, Scherer H, Uzun R (2009) Dalton Trans pp 2687–2694Google Scholar
  33. 33.
    Ivanov SV, Miller SM, Anderson OP, Solntsev KA, Strauss SH (2003) J Am Chem Soc 125:4694–4695CrossRefGoogle Scholar
  34. 34.
    Patmore NJ, Ingleson MJ, Mahon MF, Weller AS (2003) Dalton Trans pp 2894–2904Google Scholar
  35. 35.
    Gu W, McCulloch BJ, Reibenspies JH, Oleg V, Ozerov OV (2010) Chem Commun (Camb) 46:2820–2822CrossRefGoogle Scholar
  36. 36.
    Hannant MH, Wright JA, Lancaster SJ, Hughes DL, Horton PN, Bochmann M (2006) Dalton Trans pp 2415–2426Google Scholar
  37. 37.
    Lancaster SJ, Walker DA, Thornton-Pett M, Bochmann M (1999) Chem Commun 41:1533–1534CrossRefGoogle Scholar
  38. 38.
    Hiemisch O, Henschel D, Jones PG, Blaschette A (1996) Z Anorg Allg Chem 622:829–836CrossRefGoogle Scholar
  39. 39.
    Richardson C, Reed CA (2004) Chem Commun (Camb) 5:706–707CrossRefGoogle Scholar
  40. 40.
    Dell’Amico DB, Calderazzo F, Morvillo A, Pelizzi G, Robino P (1991) J Chem Soc Dalt Trans pp 3009–3014Google Scholar
  41. 41.
    Calderazzo F, Pallavicini P, Pampaloni G, Zanazzi PF (1990) J Chem Soc Dalt Trans pp 2743–2746Google Scholar
  42. 42.
    Preiss UP, Steinfeld G, Scherer H, Erle AMT, Benkmil B, Kraft A, Krossing I (2013) Z Anorg Allg Chem 639:714–721CrossRefGoogle Scholar
  43. 43.
    Metz MV, Sun Y, Stern CL, Marks TJ (2002) Organometallics 21:3691–3702CrossRefGoogle Scholar
  44. 44.
    Sun Y, Metz MV, Stern CL, Marks TJ (2000) Organometallics 19:1625–1627CrossRefGoogle Scholar
  45. 45.
    Cook PM, Dahl LF, Dickerhoof DW (1972) J Am Chem Soc 94:5511–5513CrossRefGoogle Scholar
  46. 46.
    Krauße J, Heublein G, Rudakoff G, Leibnitz P, Reck G (1991) J Crystallogr Spectrosc Res 21:45–49CrossRefGoogle Scholar
  47. 47.
    Bartlett PD, Condon FE, Schneider A (1944) J Am Chem Soc 66:1531–1539CrossRefGoogle Scholar
  48. 48.
    Labbow R, Reiß F, Schulz A, Villinger A (2014) Organometallics 33:3223–3226CrossRefGoogle Scholar
  49. 49.
    Lambert JB, Kania L, Zhang S (1995) Chem Rev 95:1191–1201CrossRefGoogle Scholar
  50. 50.
    Schulz A, Villinger A (2012) Angew Chem Int Ed 51:4526–4528CrossRefGoogle Scholar
  51. 51.
    Schäfer A, Reissmann M, Schäfer A, Saak W, Haase D, Müller T (2011) Angew Chem Int Ed 50:12636–12638CrossRefGoogle Scholar
  52. 52.
    Klare HFT, Oestreich M (2010) Dalton Trans 39:9176–9184CrossRefGoogle Scholar
  53. 53.
    Lambert JB, Zhao Y, Zhang SM (2001) J Phys Org Chem 14:370–379CrossRefGoogle Scholar
  54. 54.
    Lambert JB, Zhang S, Ciro SM (1994) Organometallics 13:2430–2443CrossRefGoogle Scholar
  55. 55.
    Bah J, Franzén J (2014) Chem Eur J 20:1066–1072CrossRefGoogle Scholar
  56. 56.
    Chen Y, Barton TJ (1987) Organometallics 6:2590–2592CrossRefGoogle Scholar
  57. 57.
    Kobayashi S, Murakami M, Mukaiyama T (1985) Chem Lett 14:953–956CrossRefGoogle Scholar
  58. 58.
    Stephan DW (2008) Org Biomol Chem 6:1535–1539CrossRefGoogle Scholar
  59. 59.
    Zhou J, Lancaster SJ, Walker DA, Beck S, Thornton-Pett M, Bochmann M (2001) J Am Chem Soc 123:223–237CrossRefGoogle Scholar
  60. 60.
    Chen M-C, Roberts JAS, Seyam AM, Li L, Zuccaccia C, Stahl NG, Marks TJ (2006) Organometallics 25:2833–2850CrossRefGoogle Scholar
  61. 61.
    Chen M-C, Roberts JAS, Marks TJ (2004) Organometallics 23:932–935CrossRefGoogle Scholar
  62. 62.
    Chen Y-X, Stern CL, Marks TJ (1997) J Am Chem Soc 119:2582–2583CrossRefGoogle Scholar
  63. 63.
    Williams VC, Irvine GJ, Piers WE, Li Z, Collins S, Clegg W, Elsegood MRJ, Marder TB (2000) Organometallics 19:1619–1621CrossRefGoogle Scholar
  64. 64.
    Chai J, Lewis SP, Collins S, Sciarone TJJ, Henderson LD, Chase PA, Irvine GJ, Piers WE, Elsegood MRJ, Clegg W (2007) Organometallics 26:5667–5679CrossRefGoogle Scholar
  65. 65.
    Lewis SP, Taylor NJ, Piers WE, Collins S (2003) J Am Chem Soc 125:14686–14687CrossRefGoogle Scholar
  66. 66.
    Garratt S, Guerrero A, Hughes DL, Bochmann M (2004) Angew Chem Int Ed 43:2166–2169CrossRefGoogle Scholar
  67. 67.
    Pyykkö P, Atsumi M (2009) Chem Eur J 15:12770–12779CrossRefGoogle Scholar
  68. 68.
    Gomes de Mesquita AH, MacGillavry CH, Eriks K (1965) Acta Crystallogr 18:437–443CrossRefGoogle Scholar
  69. 69.
    Goerlich JR, Farkens M, Fischer A, Jones PG, Schmutzler R (1994) Z Anorg Allg Chem 620:707–715CrossRefGoogle Scholar
  70. 70.
    Becker M, Voss K, Villinger A, Schulz A (2012) Zeitschrift für Naturforsch B 67b:643–649Google Scholar
  71. 71.
    Klapötke TM (1997) Chem Ber 130:443–452CrossRefGoogle Scholar
  72. 72.
    Tornieporth-Oetting IC, Klapötke TM (1995) Angew Chem 107:559–568CrossRefGoogle Scholar
  73. 73.
    Barrow MJ, Cradock S, Ebsworth EAV, Rankin DWH (1981) J Chem Soc Dalt Trans 16:1988–1993CrossRefGoogle Scholar
  74. 74.
    Mantina M, Chamberlin AC, Valero R, Cramer CJ, Truhlar DG (2009) J Phys Chem A 113:5806–5812CrossRefGoogle Scholar
  75. 75.
    Bondi A (1989) J Phys Chem 68:441–451CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Alexander Hinz
    • 1
  • René Labbow
    • 1
  • Fabian Reiß
    • 1
    • 2
  • Axel Schulz
    • 1
    • 2
    Email author
  • Katharina Sievert
    • 1
  • Alexander Villinger
    • 1
  1. 1.Institut für Chemie, Abteilung Anorganische ChemieUniversität RostockRostockGermany
  2. 2.Leibniz-Institut für Katalyse e.V. an der Universität RostockRostockGermany

Personalised recommendations