Skip to main content

Theoretical study on reaction mechanism of an N-heterocyclic carbene boryl azide with electron-deficient alkynes and nitriles

Abstract

A theoretical investigation of the [3+2] cycloaddition reaction of the NHC-boryl azide with alkynes and nitriles has been presented by using the DFT (B3LYP) method. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum model (PCM) for the solvent (C6H6). The title reaction could produce two different five-membered products (1,4-regioisomer and 1,5-regioisomer). The reaction pathway involves a one-step mechanism through a [3+2] addition where two nitrogen atoms of the N-heterocyclic carbene boryl azide adds to the C≡A (A=C or N) bond to form two new C–N or N–N bonds. For alkynes, the reactions can take place more easily to give 1,4-regioisomer product, while the reactions proceed for nitriles along the 1,5-regioisomer pathway. The reaction systems have high chemical reactivity with low barriers and could be favored. The calculations indicated that the cycloaddition reaction of alkynes and nitriles has the better regioselectivity. Our computational results are good consistent with the experimental observations of Merling and co-workers for [3+2]-dipolar cycloaddition reaction of N-heterocyclic carbene boryl azide.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Curran DP, Solovyev A, Makhlouf Brahmi M, Fensterbank L, Malacria M (2011) Angew Chem Int Ed 50:10294

    Article  CAS  Google Scholar 

  2. 2.

    Wang Y, Robinson GH (2011) Inorg Chem 50:12326

    Article  CAS  Google Scholar 

  3. 3.

    Makhouf Brahmi M, Monot J, Desage-El Murr M, Curran DP, Fensterbank L (2010) J Org Chem 75:6983

    Article  Google Scholar 

  4. 4.

    Chu Q, Makhlouf Brahmi M, Solovyev A, Ueng SH, Curran DP, Malacria M, Fensterbank L (2009) Chem Eur J 15:12937

    Article  CAS  Google Scholar 

  5. 5.

    Ueng SH, Fensterbank L, Lacote E, Malacria M, Curran DP (2010) Org Lett 12:3002

    Article  CAS  Google Scholar 

  6. 6.

    Monot J, Makhlouf Brahmi M, Ueng SH, Curran DP, Malacria M, Fensterbank L, Lacote E (2009) Org Lett 11:4914

    Article  CAS  Google Scholar 

  7. 7.

    Horn M, Mayr H, Lacote E, Merling E, Deaner J, Wells S, McFadden T, Curran DP (2012) Org Lett 14:82

    Article  CAS  Google Scholar 

  8. 8.

    Pan X, Lacote E, Lalevee J, Curran DP (2012) J Am Chem Soc 134:5669

    Article  CAS  Google Scholar 

  9. 9.

    Lindsay DM, McArthur D (2010) Chem Commun 46:2474

    Article  CAS  Google Scholar 

  10. 10.

    Ogawa A, Curran DP (1997) J Org Chem 62:450

    Article  CAS  Google Scholar 

  11. 11.

    Tehfe MA, MakhloufBrahmi M, Fouassier JP, Curran DP, Malacria M, Fensterbank L, Lacote E, Lalevee J (2010) Macromolecules 43:2261

    Article  CAS  Google Scholar 

  12. 12.

    Tehfe MA, Monot J, Malacria M, Fensterbank L, Fouassier JP, Curran DP, Lacote E, Lalevee J (2012) ACS Macro Lett 1:92

    Article  CAS  Google Scholar 

  13. 13.

    Bissinger P, Braunschweig H, Kraft K, Kupfer TA (2011) Angew Chem Int Ed 50:4704

    Article  CAS  Google Scholar 

  14. 14.

    McArthur D, Butts CP, Lindsay DM (2011) Chem Commun 47:6650

    Article  CAS  Google Scholar 

  15. 15.

    Wang Y, Xie Y, Abraham MY, Wei P, Schaefer HF, Robinson GH (2011) Organometallics 30:1303

    Article  Google Scholar 

  16. 16.

    Wang Y, Quillian B, Wei P, Wannere CS, Xie Y, King RB, Schaefer HF, Schleyer PVR, Robinson GH (2007) J Am Chem Soc 129:12412

    Article  CAS  Google Scholar 

  17. 17.

    Monot J, Solovyev A, Bonin-Dubarle H, Derat E, Curran DP, Robert M, Fensterbank L, Malacria M, Lacote E (2010) Angew Chem Int Ed 49:9166

    Article  CAS  Google Scholar 

  18. 18.

    Wang Y, Quillian B, Wei P, Xie YM, Wannere CS, King RB, Schaefer HF, Schleyer PVR (2008) J Am Chem Soc 130:3298

    Article  CAS  Google Scholar 

  19. 19.

    Braunschweig H, Chiu CW, Radacki K, Kupfer T (2010) Angew Chem Int Ed 49:2041

    Article  CAS  Google Scholar 

  20. 20.

    Bissinger P, Braunschweig H, Damme A, Dewhurst RD, Kupfer T, Radacki K, Wagner K (2011) J Am Chem Soc 133:19044

    Article  CAS  Google Scholar 

  21. 21.

    Jana A, Azhakar R, Tavcar G, Roesky HW, Objartel I, Stalke D (2011) Eur J Inorg Chem 2011:3686

    Article  CAS  Google Scholar 

  22. 22.

    Solovyev A, Geib SJ, Lacote E, Curran DP (2012) Organometallics 31:54

    Article  CAS  Google Scholar 

  23. 23.

    Curran DP, Boussonniere A, Geib SJ, Lacote E (2012) Angew Chem Int Ed 51:1602

    Article  CAS  Google Scholar 

  24. 24.

    Merling E, Lamm V, Geib SJ, Lacote E, Curran DP (2012) Org Lett 14:2690

    Article  CAS  Google Scholar 

  25. 25.

    Stephens PJ, Devlin FJ, Chabalowski CF (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  26. 26.

    Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comput Chem 22:976

    Article  CAS  Google Scholar 

  27. 27.

    Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  28. 28.

    Tomasi J, Persico M (1994) Chem Rev 94:2027

    Article  CAS  Google Scholar 

  29. 29.

    Mineva T, Russo N, Sicilia E (1998) J Comput Chem 19:290

    Article  CAS  Google Scholar 

  30. 30.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewfki VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford F, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2004) Gaussian 03, revision E.01. Gaussian, Inc., Pittsburgh

Download references

Acknowledgments

This work was supported by the Lanzhou University of Arts and science research and innovation team of new chemical materials. We are grateful to the Gansu Province Supercomputer Center for essential support. We are grateful to the reviewers for their invaluable suggestions.

Conflict of interest

The author(s) confirm that this article content has no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xing-hui Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 230 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xh., Wang, Kt. & Niu, T. Theoretical study on reaction mechanism of an N-heterocyclic carbene boryl azide with electron-deficient alkynes and nitriles. Struct Chem 26, 599–606 (2015). https://doi.org/10.1007/s11224-014-0522-3

Download citation

Keywords

  • Density functional study
  • Cycloaddition reaction
  • Boryl azide
  • Alkynes
  • Nitriles