Structural Chemistry

, Volume 26, Issue 2, pp 547–554 | Cite as

Correlations between hardness, electrostatic interactions, and thermodynamic parameters in the decomposition reactions of 3-buten-1-ol, 3-methoxy-1-propene, and ethoxyethene

Original Research

Abstract

Decomposition of the three isomeric compounds, 3-buten-1-ol (1), 3-methoxy-1-propene (2), and ethoxyethene (3), at two different (300 and 550 K) temperatures has been investigated by means of ab initio molecular orbital theory (MP2/6-311+G**//B3LYP/6-311+G**), hybrid-density functional theory (B3LYP/6-311+G**), the complete basis set, nuclear magnetic resonance analysis, and the electrostatic model associated with the dipole–dipole interactions. All three levels of theory showed that the calculated Gibbs free energy differences between the transition and ground state structures (ΔG) increase from compound 1 to compound 3. The variations of the calculated ΔG values can not be justified by the decrease of the calculated global hardness (η) differences between the ground and transition states structures (i.e., Δ[η(GS)−η(TS)]). Based on the synchronicity indices, the transition state structures of compounds 13 involve synchronous aromatic transition structures, but there is no significant difference between their calculated synchronicity indices. The optimized geometries for the transition state structures of the decomposition reactions of compounds 13 consist in chair-like six-membered rings. The variation of the calculated activation entropy (ΔS) values can not be justified by the decrease of Δ[η(GS)−η(TS)] parameter from compound 1 to compound 3. On the other hand, dipole moment differences between the ground and transition state structures [Δ(µTSµGS)] decrease from compound 1 to compound 3. Therefore, the electrostatic model associated with the dipole–dipole interactions justifies the increase of the calculated ΔG values from compound 1 to compound 3. The correlations between ΔG, Δ[η(GS)−η(TS)], (ΔS), k(T), electrostatic model, and structural parameters have been investigated.

Keywords

Thermal decomposition Reaction mechanism Hardness 3-Buten-1-ol 3-Methoxy-1-propene Ethoxyethene 

References

  1. 1.
    Arnold RT, Smolinsky G (1959) J Am Chem Soc 81:6443–6445CrossRefGoogle Scholar
  2. 2.
    Arnold RT, Smolinsky G (1960) J Org Chem 25:129–130CrossRefGoogle Scholar
  3. 3.
    Smith GG, Yates BL (1965) J Chem Soc 7242–7246Google Scholar
  4. 4.
    Henao D, Murillo J, Ruiz P, Quijano J, Mejía B, Castañeda L, Notario R (2012) J Phys Org Chem 25:883–887CrossRefGoogle Scholar
  5. 5.
    Sakai Y, Ando H, Oguchi T, Murakami Y (2013) Chem Phys Lett 556:29–34CrossRefGoogle Scholar
  6. 6.
    Quijano J, David J, Sanchez C, Rincon E, Guerra D, Leon LA, Notario R, Abboud JL (2002) J Mol Struct (Theochem) 580:201–205CrossRefGoogle Scholar
  7. 7.
    Smith GG, Blau SE (1964) J Phys Chem 68:1231–1234CrossRefGoogle Scholar
  8. 8.
    DePuy CH, King RW (1960) Chem Rev 60:431–457CrossRefGoogle Scholar
  9. 9.
    Glasstone KJ, Laidler KJ, Erying H (1941) The theory of rate processes Chapter 4. McGraw-Hill, New YorkGoogle Scholar
  10. 10.
    Benson SW (1969) The foundations of chemical kinetics. McGraw-Hill, New YorkGoogle Scholar
  11. 11.
    Alder K, Pascher F, Schmitz A (1943) Chem Ber 76:27–53CrossRefGoogle Scholar
  12. 12.
    Hoffmann HMR (1969) Angew Chem Int Ed Engl 8:556–557CrossRefGoogle Scholar
  13. 13.
    Lopez V, Quijano J, Luna S, Ruiz P, Rios D, Parra W, Zapata E, Gaviria J, Notario R (2013) Struct Chem 24:1811–1816CrossRefGoogle Scholar
  14. 14.
    Blades AT, Murphy GW (1952) J Am Chem Soc 74:1039–1041CrossRefGoogle Scholar
  15. 15.
    Shimofuji K, Saito K, Imamura A (1991) J Phys Chem 95:155–165CrossRefGoogle Scholar
  16. 16.
    Ibuki T, Takezaki Y (1977) Int J Chem Kinet 9:201–213CrossRefGoogle Scholar
  17. 17.
    Chamorro E, Quijano J, Notario R, Sánchez C, León LA, Chuchani G (2003) Int J Quant Chem 91:618–625CrossRefGoogle Scholar
  18. 18.
    Hehri WJ, Radom L, PvR Scheleyer, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  19. 19.
    Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822–2827CrossRefGoogle Scholar
  20. 20.
    Seminario JM, Politzer P (eds) (1995) Modern density function theory, a tool for chemistry. Elsevier, AmsterdamGoogle Scholar
  21. 21.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  22. 22.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  23. 23.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  24. 24.
    McIver JW Jr., (1974) Acc Chem Res 7:72–84CrossRefGoogle Scholar
  25. 25.
    Ermer O (1975) Tetrahedron 31:1849–1854CrossRefGoogle Scholar
  26. 26.
    Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comput Chem 17:49–56CrossRefGoogle Scholar
  27. 27.
    Fukui K (1970) J Phys Chem 74:4161–4163CrossRefGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann Jr., RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) GAUSSIAN 98, Revision A.3, Gaussian Inc., Pittsburgh, PAGoogle Scholar
  29. 29.
    Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Hommes NJVE (1996) J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  30. 30.
    Tapu D, Dixon DA, Roe C (2009) Chem Rev 109:3385–3407CrossRefGoogle Scholar
  31. 31.
    Glasstone KJ, Laidler KJ, Eyring H (1941) The theory of rate processes, Chap 4. McGraw-Hill, New YorkGoogle Scholar
  32. 32.
    Pearson RG, Palke WE (1992) J Phys Chem 96:3283–3285CrossRefGoogle Scholar
  33. 33.
    Chattaraj PK, Gutiérrez-Oliva S, Jaque P, Toro-Labbé A (2003) Mol Phys 101:2841–2853CrossRefGoogle Scholar
  34. 34.
    Ghanty TK, Ghosh SK (2002) J Phys Chem A 106:4200–4204CrossRefGoogle Scholar
  35. 35.
    Perez P, Toro-Labbe A (2000) J Phys Chem A 104:1557–1562CrossRefGoogle Scholar
  36. 36.
    Borden WT, Loncharich RJ, Houk KN (1988) Annu Rev Phys Chem 39:213–236CrossRefGoogle Scholar
  37. 37.
    Dewar MJS (1959) Tetrahedron Lett 16–18Google Scholar
  38. 38.
    Benchouk W, Mekelleche SM (2008) J Mol Struct (THEOCHEM) 862:1–6CrossRefGoogle Scholar
  39. 39.
    Moyano A, Pericas MA, Valenti EA (1989) J Org Chem 54:573–582CrossRefGoogle Scholar
  40. 40.
    Lecea B, Arrieta A, Roa G (1994) J Am Chem Soc 116:9613–9619CrossRefGoogle Scholar
  41. 41.
    Morao I, Lecea B, Cossio FP (1997) J Org Chem 62:7033–7036CrossRefGoogle Scholar
  42. 42.
    Cossio FP, Morao I, Jiao H, Schleyer PVR (1999) J Am Chem Soc 121:6737–6746CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Chemistry, College of Science, Ahvaz BranchIslamic Azad UniversityAhvazIran
  2. 2.Department of Chemistry, College of Science, Arak BranchIslamic Azad UniversityArakIran
  3. 3.Department of Chemical Engineering and Applied ChemistryAtilim UniversityAnkaraTurkey
  4. 4.Department of Chemistry, Pharmaceutical Science BranchIslamic Azad UniversityTehranIran

Personalised recommendations