Conformational properties of 1-tert-butyl-1-silacyclohexane, C5H10SiH(t-Bu): gas-phase electron diffraction, temperature-dependent Raman spectroscopy, and quantum chemical calculations

Abstract

The conformational preference of the t-butyl group in 1-t-Bu-1-silacyclohexane was studied experimentally by means of gas-phase electron diffraction (GED), and temperature-dependent Raman spectroscopy as well as by quantum chemical calculations applying density functional theory and ab initio methods. According to the GED experiment at 283 K, the vapor of the title compound contains only the equatorial conformer. At 99.5 % level of confidence, up to 4 % of axial conformer cannot be completely excluded, however. The Raman spectroscopy experiment in the temperature range of 295–375 K of the neat liquid indicated that the equatorial conformer is favored over the axial one by 0.56 (15) kcal mol−1H values). The experimental values are fairly well reproduced by the calculations. CCSD(T) calculations predict the equatorial conformer to have a 1.19 kcal mol−1 lower Gibbs free energy (corresponding to about 89 % equatorial preference) and a 0.99 kcal mol−1 lower enthalpy than the axial conformer at 300 K. According to natural bond orbital analysis, the equatorial conformer of the title compound is an example of a molecular stabilization, which is not favored by steric and conjugation effects but favored by electrostatic interactions. Results from dynamic NMR experiments were inconclusive.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York

    Google Scholar 

  2. 2.

    Juaristi E (ed) (1995) Conformational behavior of six-membered rings. Methods in stereochemical analysis. VCH, New York

    Google Scholar 

  3. 3.

    Arnason I, Kvaran Á, Bodi A (2006) Int J Quantum Chem 106:1975–1978

    Article  CAS  Google Scholar 

  4. 4.

    Winstein S, Holness NJ (1955) J Am Chem Soc 77:5562

    Article  CAS  Google Scholar 

  5. 5.

    Burkert U, Allinger NL (1982) Molecular mechanics, vol 177. ACS Monographs. American Chemical Society, Washington, DC

  6. 6.

    Booth H, Everett JR (1980) J Chem Soc Perkin Trans II:255–259

    Article  Google Scholar 

  7. 7.

    Bushweller CH (1995) Stereodynamics of cyclohexane and substituted cyclohexanes. Substituent A values. In: Juaristi E (ed) Conformational behavior of six-membered rings. Methods in stereochemical analysis. VCH, New York, pp 25–58

    Google Scholar 

  8. 8.

    Manharan M, Eliel EL (1984) Tetrahedron Lett 25(31):3267–3268

    Article  Google Scholar 

  9. 9.

    Wiberg KB, Hammer JD, Castejon H, Bailey WF, DeLeon EL, Jarret RM (1999) J Org Chem 64:2085–2095

    Article  CAS  Google Scholar 

  10. 10.

    Taddei F, Kleinpeter E (2004) J Mol Struct (THEOCHEM) 683:29–41

    Article  CAS  Google Scholar 

  11. 11.

    Taddei F, Kleinpeter E (2005) J Mol Struct (Theochem) 718:141–151

    Article  CAS  Google Scholar 

  12. 12.

    Cortés-Guzmán F, Hernández-Trujillo J, Cuevas G (2003) J Phys Chem A 107(44):9253–9256

    Article  Google Scholar 

  13. 13.

    Arnason I, Kvaran A, Jonsdottir S, Gudnason PI, Oberhammer H (2002) J Org Chem 67(11):3827–3831

    Article  CAS  Google Scholar 

  14. 14.

    Favero LB, Velino B, Caminati W, Arnason I, Kvaran A (2006) Organometallics 25:3813–3816

    Article  CAS  Google Scholar 

  15. 15.

    Kern T, Hölbling M, Dzambaski A, Flock M, Hassler K, Wallevik SÓ, Arnason I, Bjornsson R (2012) J Raman Spectrosc 43(9):1337–1342

    CAS  Google Scholar 

  16. 16.

    Shainyan BA, Kleinpeter E (2012) Tetrahedron 68:114–125

    Article  CAS  Google Scholar 

  17. 17.

    Durig JR, El Defrawy AM, Ward RM, Guirgis GA, Gounev TK (2008) Struct Chem 19:579–594

    Article  CAS  Google Scholar 

  18. 18.

    Eliel EL, Manoharan M (1981) J Org Chem 46:1959–1962

    Article  Google Scholar 

  19. 19.

    Squillacote ME, Neth JM (1987) J Am Chem Soc 109:198–202

    Article  CAS  Google Scholar 

  20. 20.

    Girichev GV, Giricheva NI, Bodi A, Gudnason PI, Jonsdottir S, Kvaran A, Arnason I, Oberhammer H (2007) Chem Eur J 13:1776–1783

    Article  CAS  Google Scholar 

  21. 21.

    Girichev GV, Giricheva NI, Bodi A, Gudnason PI, Jonsdottir S, Kvaran A, Arnason I, Oberhammer H (2009) Chem Eur J 15:8929. doi:10.1002/chem.200902290

    Article  CAS  Google Scholar 

  22. 22.

    Wallevik SÓ, Bjornsson R, Kvaran Á, Jonsdottir S, Arnason I, Belyakov AV, Baskakov AA, Hassler K, Oberhammer H (2010) J Phys Chem A 114(5):2127–2135

    Article  CAS  Google Scholar 

  23. 23.

    Wallevik SÓ, Bjornsson R, Kvaran Á, Jonsdottir S, Arnason I, Belyakov AV, Kern T, Hassler K (2013) Organometallics 32:6996–7005

    Article  CAS  Google Scholar 

  24. 24.

    Shainyan BA, Kleinpeter E (2013) Tetrahedron 69:5927–5936

    Article  CAS  Google Scholar 

  25. 25.

    Bjornsson R, Arnason I (2009) Phys Chem Chem Phys 11(39):8689–8697. doi:10.1039/b9100116d

    Article  CAS  Google Scholar 

  26. 26.

    Sigolaev YF, Semenov SG, Belyakov AV (2013) Russ J Gen Chem 83:932–937. doi:10.1134/S1070363213050083

    Article  CAS  Google Scholar 

  27. 27.

    Sipachev VA (1985) J Mol Struct (Theochem) 121:143–151

    Article  Google Scholar 

  28. 28.

    Sipachev VA (1999) Vibrational effects in diffraction and microwave experiments: a start on the problem, vol 5. JAI, New York

    Google Scholar 

  29. 29.

    Hamilton WC (1965) Acta Crystallogr 18:502–510

    Article  CAS  Google Scholar 

  30. 30.

    Bodi A, Kvaran Á, Jonsdottir S, Antonsson E, Wallevik SÓ, Arnason I, Belyakov AV, Baskakov AA, Hölbling M, Oberhammer H (2007) Organometallics 26(26):6544–6550

    Article  CAS  Google Scholar 

  31. 31.

    Badenhoop JK, Weinhold F (1997) J Chem Phys 107(14):5406

    Article  CAS  Google Scholar 

  32. 32.

    Badenhoop JK, Weinhold F (1997) J Chem Phys 107(14):5422

    Article  CAS  Google Scholar 

  33. 33.

    Badenhoop JK, Weinhold F (1999) Int J Quantum Chem 72(4):269

    Article  CAS  Google Scholar 

  34. 34.

    Weinhold F (2012) Discovering chemistry with natural bond orbitals. Wiley, Hoboken

    Google Scholar 

  35. 35.

    Kong L, Bischoff FA, Valeev EF (2012) Chem Rev 112:75–107

    Article  CAS  Google Scholar 

  36. 36.

    West R (1954) J Am Chem Soc 76:6012–6014

    Article  CAS  Google Scholar 

  37. 37.

    Girichev GV, Shlykov SA, Petrova VN, Subbotina NY, Lapshina SB, Danilova TG (1988) Izv Vyssh Uchebn Zaved, Khim Khim Tekhnol (in Russian) 31:46

    CAS  Google Scholar 

  38. 38.

    Girichev GV, Shlykov SA, Revichev YF (1986) Instrum Exp Tech (English Transl) 2 (1984) 457(4):167

  39. 39.

    Girichev GV, Utkin AN, Revichev YF (1984) Instrum Exp Tech (English Transl) 2 (1984) 457(N2):187

  40. 40.

    Girichev EG, Zakharov AV, Girichev GV, Bazanov MI (2000) Izv VUZ Tekstiln Prom (Russian) 2:142

    Google Scholar 

  41. 41.

    Ross AW, Fink M, Hilderbrandt RL (1992) International Tables of Crystallography, C. Kluwer, Dordrecht

    Google Scholar 

  42. 42.

    Andersen B, Seip HM, Strand TG, Stolevik R (1969) Acta Chem Scand 23:3224

    Article  CAS  Google Scholar 

  43. 43.

    Gundersen G, Samdal S, Seip HM (1981) Least squares structural refinement program based on gas electron-diffraction data, vol I–III. Department of Chemistry, University of Oslo, Oslo

  44. 44.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli JW, Ochterski R, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox D (2009) Gaussian 09, Revision D01. Gaussian, Inc., Wallingford CT

  45. 45.

    Glendening ED, Landis CR, Weinhold F (2012) WIREs Comput Mol Sci 2:1–42

    Article  CAS  Google Scholar 

  46. 46.

    Weinhold F (1998) Natural bond orbital methods. Encyclopedia of computational chemistry, vol 3. Wiley, Chichester

    Google Scholar 

  47. 47.

    Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press, Cambridge

    Google Scholar 

  48. 48.

    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) Natural bond orbital analysis program: NBO 6.0. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI

  49. 49.

    Glendening ED, Landis CR, Weinhold F (2013) J Comput Chem 34:1429–1437. doi:10.1002/jcc.23266

    Article  CAS  Google Scholar 

  50. 50.

    Peterson KA, Adler TB, Werner HJ (2008) J Chem Phys 128:084102

    Article  Google Scholar 

  51. 51.

    Yousaf KE, Peterson KA (2008) J Chem Phys 129:184108

    Article  Google Scholar 

  52. 52.

    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7(18):3297–3305

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A financial support from RANNÍS—The Icelandic Centre for Research (Grant No. 080038021) is gratefully acknowledged. A.V.B. is grateful to the Government of RF (Project 11.G34.31.0069). S.A.S. is grateful to the Russian Foundation for Basic Research, RFBR (Grant No. 14-03-00923-a). T.K. and K.H. thank the Austrian Science Foundation FWF (Fonds zur Förderung der wissenschaftlichen Forschung, Vienna) for financial support of project P 21272-N19.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ingvar Arnason.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belyakov, A.V., Sigolaev, Y., Shlykov, S.A. et al. Conformational properties of 1-tert-butyl-1-silacyclohexane, C5H10SiH(t-Bu): gas-phase electron diffraction, temperature-dependent Raman spectroscopy, and quantum chemical calculations. Struct Chem 26, 445–453 (2015). https://doi.org/10.1007/s11224-014-0503-6

Download citation

Keywords

  • Silacyclohexane
  • Conformational analysis
  • Raman spectroscopy
  • Quantum chemical calculations
  • Molecular structure