Skip to main content
Log in

Ab initio calculations of cooperativity effects on chalcogen bonding: linear clusters of (OCS)2–8 and (OCSe)2–8

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Chalcogen bonding, a Lewis acid−Lewis base attractive interaction in which a chalcogen atom (O, S, Se or Te) acts as the Lewis acid, plays a critical roles in fields as diverse as molecular biology, drug design and material engineering. In this work, ab initio calculations are performed to analyze the cooperative effects in linear (OCS) n and (OCSe) n clusters, where n = 2–8. These cooperative effects are analyzed in terms of geometric, energetic and 17O nuclear magnetic resonance (NMR) parameters and electron charge density properties of the clusters. The results of electron density analysis reveal that the capacity of the OCS and OCSe clusters to concentrate electrons at the S···O and Se···O critical points, respectively, enhances considerably with cluster size. The results also indicate that the magnitude of cooperative effects is more important for OCSe than for OCS clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  2. Kouvatsos N, Meldrum JK, Searle MS, Thomas NR (2006) Coupling ligand recognition to protein folding in an engineered variant of rabbit ileal lipid binding protein. Chem Commun 44:4623–4625

    Article  Google Scholar 

  3. Esrafili MD (2012) Characteristics and nature of the intermolecular interactions in boron-bonded complexes with carbene as electron donor: an ab initio, SAPT and QTAIM study. J Mol Model 18:2003–2011

    Article  CAS  Google Scholar 

  4. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  5. Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) Br···O complexes as probes of factors affecting halogen bonding: interactions of bromobenzenes and bromopyrimidines with acetone. J Chem Theory Comput 5:155–163

    Article  CAS  Google Scholar 

  6. Esrafili MD, Solimannejad M (2013) Revealing substitution effects on the strength and nature of halogen–hydride interactions: a theoretical study. J Mol Model 19:3767–3777

    Article  CAS  Google Scholar 

  7. Bleiholder C, Werz DB, Köppel Gleiter R (2006) Theoretical investigations on chalcogen–chalcogen interactions: what makes these nonbonded interactions bonding? J Am Chem Soc 128:2666–2674

    Article  CAS  Google Scholar 

  8. Li QZ, Li R, Guo P, Li H, Li WZ, Cheng JB (2012) Competition of chalcogen bond, halogen bond, and hydrogen bond in SCS–HOX and SeCSe–HOX (X=Cl and Br) complexes. Comput Theor Chem 980(2012):56–61

    Article  CAS  Google Scholar 

  9. Murray JS, Lane P, Clark T, Politzer P (2007) σ-Hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  10. Murray JS, Lane P, Politzer P (2008) Simultaneous σ-hole and hydrogen bonding by sulfur- and selenium-containing heterocycles. Int J Quantum Chem 108:2770–2781

    Article  CAS  Google Scholar 

  11. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  12. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  13. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42:1210–1250

    Article  CAS  Google Scholar 

  14. Kusamoto T, Yamamoto HM, Kato R (2013) Utilization of σ-holes on sulfur and halogen atoms for supramolecular cation···anion interactions in bilayer Ni(dmit)2 anion radical salts. Cryst Growth Des 13:4533–4541

    Article  CAS  Google Scholar 

  15. Wang WZ, Ji BM, Zhang Y (2009) Chalcogen bond: a sister noncovalent bond to halogen bond. J Phys Chem A 113:8132–8135

    Article  Google Scholar 

  16. Brezgunova ME, Lieffrig J, Aubert E, Dahaoui S, Fertey P, Lebègue S, Ángyán JG, Fourmigué M, Espinosa E (2013) Chalcogen bonding: experimental and theoretical determinations from electron density analysis. Geometrical preferences driven by electrophilic–nucleophilic interactions. Cryst Growth Des 13:3283–3289

    Article  CAS  Google Scholar 

  17. Scheiner S (2013) Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. Int J Quantum Chem 113:1609–1620

    Article  CAS  Google Scholar 

  18. Iwaoka M, Takemoto S, Tomoda S (2002) Statistical and theoretical investigations on the directionality of nonbonded S···O interactions. Implications for molecular design and protein engineering. J Am Chem Soc 124:10613–10620

    Article  CAS  Google Scholar 

  19. Bauzá A, Quiñonero D, Deyà PM, Frontera A (2013) Halogen bonding versus chalcogen and pnicogen bonding: a combined Cambridge structural database and theoretical study. CrystEngComm 15:3137–3144

    Article  Google Scholar 

  20. Esrafili MD, Mohammadian F, Solimannejad M (2014) A theoretical evidence for mutual influence between S···N(C) and hydrogen/lithium/halogen bonds: competition and interplay between π-hole and σ-hole interactions. Struct Chem. doi:10.1007/s11224-014-0392-8

    Google Scholar 

  21. Li Q, Li R, Guo P, Li H, Li W, Cheng J (2012) Competition of chalcogen bond, halogen bond, and hydrogen bond in SCS–HOX and SeCSe–HOX (X=Cl and Br) complexes. Comput Theor Chem 980:56–61

    Article  CAS  Google Scholar 

  22. Cozzolino AF, Vargas-Baca I, Mansour S, Mahmoudkhani AH (2005) The nature of the supramolecular association of 1,2,5-Chalcogenadiazoles. J Am Chem Soc 127:3184–3190

    Article  CAS  Google Scholar 

  23. Alkorta I, Blanco F, Deya PM, Elguero J, Estarellas C, Frontera A, Quinonero D (2010) Cooperativity in multiple unusual weak bonds. Theor Chem Acc 126:1–14

    Article  CAS  Google Scholar 

  24. Esrafili MD, Esmailpour P, Mohammadian-Sabet F, Solimannejad M (2013) Theoretical study of the interplay between halogen bond and lithium–π interactions: cooperative and diminutive effects. Chem Phys Lett 588:47–50

    Article  CAS  Google Scholar 

  25. Esrafili MD (2014) Shahabivand S (2014) A theoretical evidence for cooperativity effects in fluorine-centered halogen bonds: linear (FCN)2–7 and (FNC)2–7 clusters. Struct Chem 25:403–408

    Article  CAS  Google Scholar 

  26. Grabowski SJ, Bilewicz E (2006) Cooperativity halogen bonding effect–Ab initio calculations on H2CO···(ClF) n complexes. Chem Phys Lett 427:51–55

    Article  CAS  Google Scholar 

  27. Alkorta I, Blanco F, Elguero J (2009) A computational study of the cooperativity in clusters of interhalogen derivatives. Struct Chem 20:63–71

    Article  CAS  Google Scholar 

  28. Solimannejad M, Ghafari S, Esrafili MD (2013) Theoretical insight into cooperativity in lithium-bonded complexes: linear clusters of LiCN and LiNC. Chem Phys Lett 577:6–10

    Article  CAS  Google Scholar 

  29. Esrafili MD, Hadipour NL (2011) Characteristics and nature of halogen bonds in linear clusters of NCX (X=Cl, and Br): an ab initio, NBO and QTAIM study. Mol Phys 109:2451–2460

    Article  CAS  Google Scholar 

  30. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  31. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  32. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131:014102

    Article  Google Scholar 

  33. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, New York

    Google Scholar 

  34. Biegler-Konig F, Schonbohm J, Bayles D (2001) AIM2000-A program to analyze and visualize atoms in molecules. J Comput Chem 22:545–559

    Article  Google Scholar 

  35. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  36. Wolinski K, Hilton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  37. Duer MJ (2002) Solid state NMR spectroscopy. Blackwell Science Ltd, London

    Google Scholar 

  38. Ziólkowski M, Grabowski SJ, Leszczynski J (2006) Cooperativity in hydrogen-bonded interactions: ab Initio and “atoms in molecules” analyses. J Phys Chem A 110:6514–6521

    Article  Google Scholar 

  39. Grabowski SJ, Sokalski WA, Leszczynski J (2006) The possible covalent nature of N–H···O hydrogen bonds in formamide dimer and related systems: an ab initio study. J Phys Chem A 110:4772–4779

    Article  CAS  Google Scholar 

  40. Koch U, Popelier PLA (1995) Characterization of C–H···O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  41. Kar T, Scheiner S (2004) Comparison of cooperativity in CH···O and OH···O hydrogen bonds. J Phys Chem A 108:9161–9168

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi D. Esrafili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esrafili, M.D., Mohammadian-Sabet, F. Ab initio calculations of cooperativity effects on chalcogen bonding: linear clusters of (OCS)2–8 and (OCSe)2–8 . Struct Chem 26, 199–206 (2015). https://doi.org/10.1007/s11224-014-0477-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0477-4

Keywords

Navigation