Structural Chemistry

, Volume 26, Issue 1, pp 61–69 | Cite as

Investigation on the inclusion of diclofenac with β-cyclodextrin: a molecular modeling approach

  • Khalil Sahra
  • Karim Dinar
  • Achour Seridi
  • Mekki Kadri
Original Research

Abstract

Host–guest interactions between β-cyclodextrin and diclofenac were simulated using the semi-empirical PM3, PM6, and ONIOM (B3LYP/3-21g: PM3 and B3LYP/3-21g: PM6) methods. The binding energy and the total stabilization energy (EONIOM) were used to confirm the most favorable inclusion complex structure. Thermodynamic parameters values show that the inclusion reaction is exothermic and an enthalpy-driven process in gas phase. However, in water, the inclusion is an enthalpy–entropy-driven process, in accord with previous experimental results. The NBO analysis demonstrates that the hydrogen bonds interactions are of type C–H···O with stabilization energies smaller than 2 kcal/mol, indicating that the host–guest interactions are weak.

Keywords

Diclofenac β-Cyclodextrin PM3 PM6 Semi-empirical methods ONIOM NBO 

References

  1. 1.
    Ficarra R, Ficarra P, Di Bella MR, Raneri D, Tommasini S, Calabro ML, Villar A, Coppolino S (2000) J Pharm Biomed Anal 23:231–236CrossRefGoogle Scholar
  2. 2.
    Shah M, Sancheti P, Vyas V, Karekar P, Pore Y (2010) Drug Discov Ther 4(2):70–76Google Scholar
  3. 3.
    Fernandes CM, Carvalho RA, Pereira da Costa S, Veiga FJB (2003) Eur J Pharm Sci 18:285–296CrossRefGoogle Scholar
  4. 4.
    Stella VJ, Rajewski RA (1997) Pharm Res 14:556–567CrossRefGoogle Scholar
  5. 5.
    Loftsson T, Hreinsdottir D, Masson M (2005) Int J Pharm 302:18–28CrossRefGoogle Scholar
  6. 6.
    Aleem O, Kuchekar B, Pore Y, Late S (2008) J Pharm Biomed Anal 47:535–540CrossRefGoogle Scholar
  7. 7.
    Doiphode D, Gaikwad S, Pore Y, Kuchekar B, Late S (2008) J Incl Phenom Macrocycl Chem 62(1–2):43–50CrossRefGoogle Scholar
  8. 8.
    Quintino MSM, Araki K, Toma HE, Angnes L (2006) Talanta 68:1281–1286CrossRefGoogle Scholar
  9. 9.
    Astilean S, Ionescu C, Cristea G, Farcas S, Bratu I, Vitoc R (1997) Biospectroscopy 3:233–239CrossRefGoogle Scholar
  10. 10.
    Iliescu T, Baia M, Miclãuş V (2004) Eur J Pharm Sci 22:487–495CrossRefGoogle Scholar
  11. 11.
    Bratu I, Astilean S, Ionescu Corina, Iluvenne JP, Legrand P (1998) Spectrochim Acta Part A 54:191–196CrossRefGoogle Scholar
  12. 12.
    Vieira ACF, Serra AC, Carvalho RA, Gonsalves A, Figueiras A, Veiga FJ, Basit AW, Rocha Gonsalves AM (2013) Carbohydr Polym 93:512–517CrossRefGoogle Scholar
  13. 13.
    Abdoh AA, Zughul MB, Eric J, Davies D, Badwan A (2001) J Incl Phenom Macrocycl Chem 57:503–510CrossRefGoogle Scholar
  14. 14.
    Morari C, Bogdan D, Rom Bogdan M (2005) J Phys 50:995–1002Google Scholar
  15. 15.
    Bogdan D, Morari C (2007) Phys Lett A 366:454–459CrossRefGoogle Scholar
  16. 16.
    Whittaker D, Penkler L, Glintenkamp L, Van Outshoorn M, Wessels P (1996) J Incl Phenom Macrocycl Chem 25:177CrossRefGoogle Scholar
  17. 17.
    Pose-Vilarnovo B, Santana-Penin L, Echezarreta-Lopez M, Perez-Marcos MB, Vila-Lato JL, Labandeira Torres (1999) S T P Pharm Sci 9:231–236Google Scholar
  18. 18.
    Mucci A, Schenetti L, Vandelli M, Ruozi B, Forni F (1999) J Chem Res J422:1761–1795Google Scholar
  19. 19.
    Arancibia JA, Escandar GM (1999) Analyst 124:1833–1838CrossRefGoogle Scholar
  20. 20.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels A D, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc, Wallingford CTGoogle Scholar
  21. 21.
    Nagaraju M, Sastry GN (2009) J Phys Chem A 113:9533–9542CrossRefGoogle Scholar
  22. 22.
    Maseras F, Morokuma K (1995) J Comput Chem 16:1170–1179CrossRefGoogle Scholar
  23. 23.
    Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100:19357–19363CrossRefGoogle Scholar
  24. 24.
    Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struct (THEOCHEM) 462:1–21CrossRefGoogle Scholar
  25. 25.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  26. 26.
    Chocholoušová J, Špirko V, Hobza P (2004) Phys Chem Chem Phys 6:37–41CrossRefGoogle Scholar
  27. 27.
    Lindner K, Saenger W (1978) Angew Chem Int Ed Engl 96:694–695CrossRefGoogle Scholar
  28. 28.
    Lindner K, Saenger W (1982) Carbohydr Res 99:103–115CrossRefGoogle Scholar
  29. 29.
    Koehler JEH, Saenger W, van Gunsteren WF (1987) Eur Biophys J 15:211–224CrossRefGoogle Scholar
  30. 30.
    Koehler JEH, Saenger W, van Gunsteren WF (1988) Eur Biophys J 16:153–168CrossRefGoogle Scholar
  31. 31.
    Melani F, Mulinacci N, Romani A, Mazzi G, Vincieri FF (1998) Int J Pharm 166:145–155CrossRefGoogle Scholar
  32. 32.
    Braesicke K, Steiner T, Saenger W, Knapp EW (2000) J Mol Graph Model 18:143–152CrossRefGoogle Scholar
  33. 33.
    Momany FA, Willett JL (2000) Carbohydr Res 326:210–226CrossRefGoogle Scholar
  34. 34.
    Winkler RG, Fioravanti S, Ciccotti G, Margheritis C, Villa M (2000) J Comput Aided Mol Des 14:659–667CrossRefGoogle Scholar
  35. 35.
    Starikov EB, Bräsicke K, Knapp EW, Saenger W (2001) Chem Phys Lett 336:504–510CrossRefGoogle Scholar
  36. 36.
    Lawtrakul L, Viernstein H, Wolschann P (2003) Int J Pharm 256:33CrossRefGoogle Scholar
  37. 37.
    Steiner T, Koellner G (1994) J Am Chem Soc 116:5122CrossRefGoogle Scholar
  38. 38.
    Zabel V, Saenger W, Mason SA (1986) J Am Chem Soc 108:3664–3673CrossRefGoogle Scholar
  39. 39.
    Seridi S, Seridi A, Berredjem M, Kadri M (2013) J Mol Struct 1052:8–16CrossRefGoogle Scholar
  40. 40.
    Holt JS (2010) J Mol Struct 96:31–38CrossRefGoogle Scholar
  41. 41.
    Xing SK, Zhang C, Ai HQ, Zhao Q, Zhang Q, Sun DZ (2009) J Mol Liq 146:15–22CrossRefGoogle Scholar
  42. 42.
    Politzer P, Abu-Awwad F (1998) Theor Chem Acta 99:83CrossRefGoogle Scholar
  43. 43.
    Karelson M, Lobanov VS, Katrizky R (1996) Chem Rev 96:1027–1044CrossRefGoogle Scholar
  44. 44.
    Venkatesh G, Sivasankar T, Karthick M, Rajendiran N (2013) J Incl Phenom Macrocycl Chem 77:309–318CrossRefGoogle Scholar
  45. 45.
    Rekharsky MV, Goldberg RN, Schwarz FP, Tewari YB, Ross PD, amashoji YY, Inoue Y (1995) J Am Chem Soc 117:8830–8840CrossRefGoogle Scholar
  46. 46.
    Uccello-Barretta G, Balzano F, Sicoli G, Fríglola C, Aldana I, Monge A, Paolino D, Guccione S (2004) Bioorg Med Chem 12:447–458CrossRefGoogle Scholar
  47. 47.
    Leung MK (2004) Chemistry 62:43–58 (the Chinese Chem. Soc., Taipei)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Khalil Sahra
    • 1
  • Karim Dinar
    • 1
  • Achour Seridi
    • 1
  • Mekki Kadri
    • 1
  1. 1.Laboratoire de Chimie PhysiqueUniversité 8 Mai 1945GuelmaAlgeria

Personalised recommendations