Skip to main content
Log in

Mechanism and rate constants for ammonia photochemical oxidation with O2 on the singlet and triplet potential energy surfaces

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The mechanism and thermodynamic of NH3 + O2 reaction on the singlet and triplet potential energy surfaces (PES), were carried out using the RMP2 and CCSD (T)//RMP2 theoretical approaches in connection with the 6-311++G(d, p) basis set. Three pre-reactive complexes, 1C1, 1C2, and 3C1 on the singlet and triplet PES were formed between ammonia and molecular oxygen. With variety of pre-reactive complexes, six types of products are obtained, of which two types are found to be thermodynamically stable. The mechanistic properties of all products channels are discussed. Results show that production of HONO + H2 and HN(OH)2 are the main reaction channels in thermodynamic viewpoint with the Gibbs free energy of ∆ = −34.681 and −27.153 kcal/mol, respectively. Rate constants of the title reaction over the temperature range of (200–1000 K) show kinetic products are different from thermodynamic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Graedel TE, Weschler C (1981) J Rev Geophys Space Sci 19:505–539

    Article  CAS  Google Scholar 

  2. Ianniello A, Spataro F (2010) Atmos Chem Phys 10:9487–9503

    Article  CAS  Google Scholar 

  3. Kirschbaum B, Sica D, Anderson FP (1999) J Lab Clin Med 133:597

    Article  CAS  Google Scholar 

  4. Papousek D (1983) J Molecular Struct 100:179

    Article  CAS  Google Scholar 

  5. Appl M (2006) Ammonia. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

  6. Adjei MB, Quesenberry KH, Chamblis CG (2002) University of Florida IFAS, SS-AGR-56

  7. Rennard JJ, Calidonna SE, Henley MV (2004) J Hazard Mat 108:29–60

    Article  Google Scholar 

  8. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 (Revision B 03). Gaussian Inc., Pittsburgh

    Google Scholar 

  9. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275–280

    Article  CAS  Google Scholar 

  10. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:281–289

    Article  CAS  Google Scholar 

  11. Curtiss LA, Raghavachari K, Redfern P, Rassolov V (1998) J Chem Phys 109:7764

    Article  CAS  Google Scholar 

  12. Boboul A, Curtiss L, Redfern P, Raghavachari K (1999) J Chem Phys 110:7650

    Article  Google Scholar 

  13. Lee TJ, Taylor PR (1989) Int J Quantum Chem 36:199–207

    Article  Google Scholar 

  14. Johnson RD III, Hudgens JW (1996) J Phys Chem 100:19874

    Article  CAS  Google Scholar 

  15. Dertinger S, Geers A, Kappert J, Wiebrecht J (1995) Faraday Discuss R Soc 102:31

    Article  CAS  Google Scholar 

  16. Hess WP, Tully FP (1988) Chem Phys Lett 152:183

    Article  CAS  Google Scholar 

  17. Gonzalez C, Schlegel H (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  18. Boys S, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  19. Biegler-Konig F, Schoenbohm J (2002) AIM2000, 2.0th edn. Buro fur Innovative Software, Bielefeld

  20. Moein G, Vahedpour M, Nazari F (2010) Chem Phys Lett 494:315

    Article  Google Scholar 

  21. Steinfeld JI, Francisco JS, Hase WL (1989) Chemical kinetics and dynamic. Prentice-Hall, Upper Saddle River

    Google Scholar 

  22. Wigner EP (1932) Z Phys Chem Abt B 19:203

    Google Scholar 

  23. Eyring H (1935) J Chem Phys 3:1079

    Google Scholar 

  24. Evans M, Polyani M (1935) T Faraday Soc 31:875

    Article  CAS  Google Scholar 

  25. Robinson P, Holbrook K (1972) Unimolecular reactions. Wiley-Inter-Science, New York

    Google Scholar 

  26. Forst W (1973) Theory of unimolecular reactions. Academic Press, New York

    Google Scholar 

  27. Miyoshi A (2010) Steady-State Unimolecular Master-Equation Solver (SSUMES), University of Tokyo

  28. Miyoshi A (2010) Gaussian Post Processor (GPOP) University of Tokyo

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Vahedpour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asgharzade, S., Vahedpour, M. Mechanism and rate constants for ammonia photochemical oxidation with O2 on the singlet and triplet potential energy surfaces. Struct Chem 25, 1057–1065 (2014). https://doi.org/10.1007/s11224-013-0375-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0375-1

Keywords

Navigation