Santos RC, Leal JP, Martinho Simões JA (2009) Additivity methods for prediction of thermochemical properties. The Laidler method revisited. 2. Hydrocarbons including substituted cyclic compounds. J Chem Thermodyn 41(12):1356–1373. doi:10.1016/j.jct.2009.06.013
Article
CAS
Google Scholar
ThermInfo—collecting, retrieving, and estimating reliable thermochemical data (2011) http://www.therminfo.com. Accessed April 2012
Cox JD, Pilcher G (1970) Thermochemistry of organic and organometallic compounds. Academic Press, New York
Google Scholar
Cohen N, Benson SW (1993) Estimation of heats of formation of organic compounds by additivity methods. Chem Rev 93(7):2419–2438. doi:10.1021/cr00023a005
Article
CAS
Google Scholar
Domalski ES, Hearing ED (1993) Estimation of the thermodynamic properties of C-H-N-O-S-halogen compounds at 298.15-K. J Phys Chem Ref Data 22(4):805–1159. doi:10.1063/1.555927
Article
CAS
Google Scholar
Pedley JB (1994) Thermochemical data and structures of organic compounds, vol 1. TRC Data Series, College Station
Leal JP (2006) Additive methods for prediction of thermochemical properties. The Laidler method revisited. 1. Hydrocarbons. J Phys Chem Ref Data 35(1):55–76. doi:10.1063/1.1996609
Article
CAS
Google Scholar
Salmon A, Dalmazzone D (2006) Prediction of enthalpy of formation in the solid state (at 298.15 K) using second-order group contributions. Part 1. Carbon–hydrogen and carbon–hydrogen–oxygen compounds. J Phys Chem Ref Data 35(3):1443–1457. doi:10.1063/1.2203111
Article
CAS
Google Scholar
Salmon A, Dalmazzone D (2007) Prediction of enthalpy of formation in the solid state (at 298.15 K) using second-order group contributions—part 2: carbon–hydrogen, carbon–hydrogen–oxygen, and carbon–hydrogen–nitrogen–oxygen compounds. J Phys Chem Ref Data 36(1):19–58. doi:10.1063/1.2435401
Article
CAS
Google Scholar
Stewart JJP (2004) Use of semiempirical methods for detecting anomalies in reported enthalpies of formation of organic compounds. J Phys Chem Ref Data 33(3):713–724. doi:10.1063/1.1643403
Article
CAS
Google Scholar
Stewart JJP (2004) Comparison of the accuracy of semiempirical and some DFT methods for predicting heats of formation. J Mol Model 10(1):6–12. doi:10.1007/s00894-003-0157-6
Article
CAS
Google Scholar
Pedley JB, Naylor RD, Kirby SP (1986) Thermochemical data of organic compounds, 2nd edn. Chapman and Hall, London
Book
Google Scholar
NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (2011) In: Linstrom PJ, Mallard WG (eds) National Institute of Standards and Technology, Gaithersburg. http://webbook.nist.gov/chemistry/. Accessed April 2012
Acree W Jr, Chickos JS (2010) Phase transition enthalpy measurements of organic and organometallic compounds. Sublimation, vaporization and fusion enthalpies from 1880 to 2010. J Phys Chem Ref Data 39(4). doi:10.1063/1.3309507
Energética Molecular, Colóides e Bio-Interfaces (2008) CIQ(U.P.)—Centro de Investigação em Química da Universidade do Porto. http://ciq.fc.up.pt/pt/page/energetica-molecular-coloides-e-bio-interfaces. Accessed April 2012
Abteilung Physikalische Chemie (2010) Institut für Chemie, Universität Rostock. http://www.chemie1.uni-rostock.de/pci/index.html. Accessed April 2012
Analytical Chemistry Division (2009) Department of Chemistry, University of North Texas. http://www.chem.unt.edu/research/analytical.html. Accessed April 2012
Grupo de Termoquímica y Termofísica (2012) IQFR—Instituto de Química-Física “Rocasolano”, Departamento de Estructura y Dinámica Molecular. http://www.iqfr.csic.es/Termoquimica/. Accessed April 2012
Zhao M, Gimarc BM (1993) Strain energies in cyclic on, n = 3–8. J Phys Chem 97(16):4023–4030. doi:10.1021/j100118a017
Article
CAS
Google Scholar
Wheeler SE, Houk KN, Schleyer PVR, Allen WD (2009) A hierarchy of homodesmotic reactions for thermochemistry. J Am Chem Soc 131(7):2547–2560. doi:10.1021/Ja805843n
Article
CAS
Google Scholar
Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110(6):2822–2827. doi:10.1063/1.477924
Article
CAS
Google Scholar
Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (2000) A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys 112(15):6532–6542. doi:10.1063/1.481224
Article
CAS
Google Scholar
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford
Mohr PJ, Taylor BN, Newell DB (2012) CODATA recommended values of the fundamental physical constants: 2010. J Phys Chem Ref Data 41(4). doi:10.1063/1.4724320
Ribeiro da Silva MAV, Matos MAR, do Rio CMA, Morais VMF (1997) Thermochemical and theoretical studies of 4-methylbiphenyl, 4,4′-dimethylbiphenyl, 4,4′-dimethyl-2,2′-bipyridine. J Chem Soc Faraday Trans 93(17):3061–3065. doi:10.1039/A701769C
Article
Google Scholar
Roux MV, Temprado M, Chickos JS, Nagano Y (2008) Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. J Phys Chem Ref Data 37(4):1855–1996. doi:10.1063/1.2955570
Article
CAS
Google Scholar
Verevkin SP (1999) Thermochemical investigation on alpha-methyl-styrene and parent phenyl substituted alkenes. Thermochim Acta 326(1–2):17–25. doi:10.1016/S0040-6031(98)00585-1
Article
CAS
Google Scholar
Roth WR, Adamczak O, Breuckmann R, Lennartz H-W, Boese R (1991) Resonance energy calculation; the MM2ERW force field. Chem Ber 124(11):2499–2521. doi:10.1002/chin.199202066
Article
CAS
Google Scholar
Balepin AA, Lebedev VP, Miroshnichenko EA, Koldobskii GI, Ostovskii VA, Larionov BP, Gidaspov BV, Lebedev YA (1977) Energy effects in polyphenylenes and phenyltetrazoles. Svoistva Veshchestv Str Mol 93–98
Rauh HJ, Geyer W, Schmidt H, Geiseler G (1973) Heat of formation and mesomerism energies of pi-bond systems. 5. Heats of formation of butadiene oligomers. Z Phys Chem (Leipzig) 253(1–2):43–48
CAS
Google Scholar
Lebedeva ND, Ryadnenko VL, Kiseleva NN, Nazarova LF (1977) Enthalpy of formation of isopropenylacetylene and diisopropenyldiacetylene. Vses Konf Kalorim Rasshir Tezisy Dokl 7th 1:91–95
Google Scholar
Cammenga HK, Emel’yanenko VN, Verevkin SP (2009) Re-investigation and data assessment of the isomerization and 2,2′-cyclization of stilbenes and azobenzenes. Ind Eng Chem Res 48(22):10120–10128. doi:10.1021/Ie900800q
Article
CAS
Google Scholar
Eliel EL, Engelsman JJ (1996) The heats of combustion of gaseous cyclotetradecane and trans-stilbene—a tale of long-standing confusion. J Chem Educ 73(9):903–905. doi:10.1021/ed073p903
Article
CAS
Google Scholar
Williams RB (1942) Heats of catalytic hydrogenation in solution. I. Apparatus, technique, and the heats of hydrogenation of certain pairs of stereoisomers. J Am Chem Soc 64:1395–1404. doi:10.1021/Ja01258a045
Article
CAS
Google Scholar
Coops J, Hoijtink GJ (1950) Thermochemical investigations on arylethenes. I. Heats of combustion of phenylethenes. Recl Trav Chim Pays-Bas 69(3):358–367. doi:10.1002/recl.19500690316
Article
CAS
Google Scholar
Brackman DS, Plesch PH (1952) Some physical properties of cis-stilbene. J Chem Soc (Jun):2188–2190. doi:10.1039/Jr9520002188
Steele WV, Chirico RD, Knipmeyer SE, Nguyen A (2002) Vapor pressure, heat capacity, and density along the saturation line: measurements for benzenamine, butylbenzene, sec-butylbenzene, tert-butylbenzene, 2,2-dimethylbutanoic acid, tridecafluoroheptanoic acid, 2-butyl-2-ethyl-1,3-propanediol, 2,2,4-trimethyl-1,3-pentanediol, and 1-chloro-2-propanol. J Chem Eng Data 47(4):648–666. doi:10.1021/je010083e
Article
CAS
Google Scholar
Agapito F, Santos RC, Martinho Simões JA (2013) Energetics of nonbonded ortho interactions in alkylbenzenes. J Phys Chem A 117(13):2873–2878. doi:10.1021/jp400475q
Prosen EJ, Johnson WH, Rossini FD (1946) Heats of combustion and formation at 25°C of the alkylbenzenes through C10H14, and of the higher normal monoalkylbenzenes. J Res Natl Bureau Stand 36(5):455–461
Article
CAS
Google Scholar
Santos RC, Leal JP (2012) A review on prediction methods for molar enthalpies of vaporization of hydrocarbons: the ELBA method as the best answer. J Phys Chem Ref Data 41(4):043101. doi:10.1063/1.4754596
Article
Google Scholar
Ribeiro da Silva MAV, Santos LMNBF, Lima LMSS (2008) Standard molar enthalpies of formation and of sublimation of the terphenyl isomers. J Chem Thermodyn 40(3):375–385. doi:10.1016/j.jct.2007.08.008
Article
CAS
Google Scholar
Verevkin SP, Ebenhoch J (1999) Strain energies of alpha-alkylsubstituted styrenes, 1,1-di-phenyl-ethene, tri-, and tetra-phenyl-ethene. Struct Chem 10(6):401–409. doi:10.1023/A:1022470804409
Article
CAS
Google Scholar
Chickos JS, Hanshaw W (2004) Vapor pressures and vaporization enthalpies of the n-alkanes from C31 to C38 at T = 298.15 K by correlation gas chromatography. J Chem Eng Data 49(3):620–630. doi:10.1021/Je030236t
Article
CAS
Google Scholar
Verevkin SP (1999) Thermochemical properties of triphenylalkanes and tetraphenylmethane. Strain in phenyl substituted alkanes. J Chem Eng Data 44(3):557–562. doi:10.1021/je9802726
Article
CAS
Google Scholar
Verevkin SP (1999) Thermochemical properties of diphenylalkanes. J Chem Eng Data 44(2):175–179. doi:10.1021/je980200e
Article
CAS
Google Scholar
Humphrey GL, Spitzer R (1950) Bond hybridization in the non-tetrahedral carbon atom. The heats of combustion of spiropentane and methylcyclobutane. J Chem Phys 18(6):902. doi:10.1063/1.1747806
Article
CAS
Google Scholar
Verevkin SP (1998) Thermochemical properties of iso-propylbenzenes. Thermochim Acta 316(2):131–136. doi:10.1016/S0040-6031(98)00310-4
Article
CAS
Google Scholar
Johnson WH, Prosen EJ, Rossini FD (1949) Heats of combustion and isomerization of the six C7H14 alkylcyclopentanes. J Res Natl Bureau Stand 42(3):251–255
Article
CAS
Google Scholar
Colomina M, Jimenez P, Roux MV, Turrion C (1989) Thermochemical properties of 1,2,4,5-tetramethylbenzene, pentamethylbenzene, and hexamethylbenzene. J Chem Thermodyn 21(3):275–281. doi:10.1016/0021-9614(89)90017-7
Article
CAS
Google Scholar
Verevkin SP (2006) Vapour pressures and enthalpies of vaporization of a series of the linear n-alkyl-benzenes. J Chem Thermodyn 38(9):1111–1123. doi:10.1016/j.jct.2005.11.009
Article
CAS
Google Scholar