Skip to main content

Thermodynamically sick molecules: searching for defective experimental enthalpies of formation values using empirical and quantum chemistry methods

Abstract

A revised parameterization of the extended Laidler bond additivity method and quantum chemistry calculations were independently used to assess the standard molar enthalpies of formation of 20 non-polycyclic hydrocarbons in the gas phase. The detected discrepancies between predicted and experimental values are discussed, illustrating how this methodology can be useful in curing thermochemical data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Santos RC, Leal JP, Martinho Simões JA (2009) Additivity methods for prediction of thermochemical properties. The Laidler method revisited. 2. Hydrocarbons including substituted cyclic compounds. J Chem Thermodyn 41(12):1356–1373. doi:10.1016/j.jct.2009.06.013

    Article  CAS  Google Scholar 

  2. ThermInfo—collecting, retrieving, and estimating reliable thermochemical data (2011) http://www.therminfo.com. Accessed April 2012

  3. Cox JD, Pilcher G (1970) Thermochemistry of organic and organometallic compounds. Academic Press, New York

    Google Scholar 

  4. Cohen N, Benson SW (1993) Estimation of heats of formation of organic compounds by additivity methods. Chem Rev 93(7):2419–2438. doi:10.1021/cr00023a005

    Article  CAS  Google Scholar 

  5. Domalski ES, Hearing ED (1993) Estimation of the thermodynamic properties of C-H-N-O-S-halogen compounds at 298.15-K. J Phys Chem Ref Data 22(4):805–1159. doi:10.1063/1.555927

    Article  CAS  Google Scholar 

  6. Pedley JB (1994) Thermochemical data and structures of organic compounds, vol 1. TRC Data Series, College Station

  7. Leal JP (2006) Additive methods for prediction of thermochemical properties. The Laidler method revisited. 1. Hydrocarbons. J Phys Chem Ref Data 35(1):55–76. doi:10.1063/1.1996609

    Article  CAS  Google Scholar 

  8. Salmon A, Dalmazzone D (2006) Prediction of enthalpy of formation in the solid state (at 298.15 K) using second-order group contributions. Part 1. Carbon–hydrogen and carbon–hydrogen–oxygen compounds. J Phys Chem Ref Data 35(3):1443–1457. doi:10.1063/1.2203111

    Article  CAS  Google Scholar 

  9. Salmon A, Dalmazzone D (2007) Prediction of enthalpy of formation in the solid state (at 298.15 K) using second-order group contributions—part 2: carbon–hydrogen, carbon–hydrogen–oxygen, and carbon–hydrogen–nitrogen–oxygen compounds. J Phys Chem Ref Data 36(1):19–58. doi:10.1063/1.2435401

    Article  CAS  Google Scholar 

  10. Stewart JJP (2004) Use of semiempirical methods for detecting anomalies in reported enthalpies of formation of organic compounds. J Phys Chem Ref Data 33(3):713–724. doi:10.1063/1.1643403

    Article  CAS  Google Scholar 

  11. Stewart JJP (2004) Comparison of the accuracy of semiempirical and some DFT methods for predicting heats of formation. J Mol Model 10(1):6–12. doi:10.1007/s00894-003-0157-6

    Article  CAS  Google Scholar 

  12. Pedley JB, Naylor RD, Kirby SP (1986) Thermochemical data of organic compounds, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  13. NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (2011) In: Linstrom PJ, Mallard WG (eds) National Institute of Standards and Technology, Gaithersburg. http://webbook.nist.gov/chemistry/. Accessed April 2012

  14. Acree W Jr, Chickos JS (2010) Phase transition enthalpy measurements of organic and organometallic compounds. Sublimation, vaporization and fusion enthalpies from 1880 to 2010. J Phys Chem Ref Data 39(4). doi:10.1063/1.3309507

  15. Energética Molecular, Colóides e Bio-Interfaces (2008) CIQ(U.P.)—Centro de Investigação em Química da Universidade do Porto. http://ciq.fc.up.pt/pt/page/energetica-molecular-coloides-e-bio-interfaces. Accessed April 2012

  16. Abteilung Physikalische Chemie (2010) Institut für Chemie, Universität Rostock. http://www.chemie1.uni-rostock.de/pci/index.html. Accessed April 2012

  17. Analytical Chemistry Division (2009) Department of Chemistry, University of North Texas. http://www.chem.unt.edu/research/analytical.html. Accessed April 2012

  18. Grupo de Termoquímica y Termofísica (2012) IQFR—Instituto de Química-Física “Rocasolano”, Departamento de Estructura y Dinámica Molecular. http://www.iqfr.csic.es/Termoquimica/. Accessed April 2012

  19. Zhao M, Gimarc BM (1993) Strain energies in cyclic on, n = 3–8. J Phys Chem 97(16):4023–4030. doi:10.1021/j100118a017

    Article  CAS  Google Scholar 

  20. Wheeler SE, Houk KN, Schleyer PVR, Allen WD (2009) A hierarchy of homodesmotic reactions for thermochemistry. J Am Chem Soc 131(7):2547–2560. doi:10.1021/Ja805843n

    Article  CAS  Google Scholar 

  21. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110(6):2822–2827. doi:10.1063/1.477924

    Article  CAS  Google Scholar 

  22. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (2000) A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys 112(15):6532–6542. doi:10.1063/1.481224

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford

  24. Mohr PJ, Taylor BN, Newell DB (2012) CODATA recommended values of the fundamental physical constants: 2010. J Phys Chem Ref Data 41(4). doi:10.1063/1.4724320

  25. Ribeiro da Silva MAV, Matos MAR, do Rio CMA, Morais VMF (1997) Thermochemical and theoretical studies of 4-methylbiphenyl, 4,4′-dimethylbiphenyl, 4,4′-dimethyl-2,2′-bipyridine. J Chem Soc Faraday Trans 93(17):3061–3065. doi:10.1039/A701769C

    Article  Google Scholar 

  26. Roux MV, Temprado M, Chickos JS, Nagano Y (2008) Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. J Phys Chem Ref Data 37(4):1855–1996. doi:10.1063/1.2955570

    Article  CAS  Google Scholar 

  27. Verevkin SP (1999) Thermochemical investigation on alpha-methyl-styrene and parent phenyl substituted alkenes. Thermochim Acta 326(1–2):17–25. doi:10.1016/S0040-6031(98)00585-1

    Article  CAS  Google Scholar 

  28. Roth WR, Adamczak O, Breuckmann R, Lennartz H-W, Boese R (1991) Resonance energy calculation; the MM2ERW force field. Chem Ber 124(11):2499–2521. doi:10.1002/chin.199202066

    Article  CAS  Google Scholar 

  29. Balepin AA, Lebedev VP, Miroshnichenko EA, Koldobskii GI, Ostovskii VA, Larionov BP, Gidaspov BV, Lebedev YA (1977) Energy effects in polyphenylenes and phenyltetrazoles. Svoistva Veshchestv Str Mol 93–98

  30. Rauh HJ, Geyer W, Schmidt H, Geiseler G (1973) Heat of formation and mesomerism energies of pi-bond systems. 5. Heats of formation of butadiene oligomers. Z Phys Chem (Leipzig) 253(1–2):43–48

    CAS  Google Scholar 

  31. Lebedeva ND, Ryadnenko VL, Kiseleva NN, Nazarova LF (1977) Enthalpy of formation of isopropenylacetylene and diisopropenyldiacetylene. Vses Konf Kalorim Rasshir Tezisy Dokl 7th 1:91–95

    Google Scholar 

  32. Cammenga HK, Emel’yanenko VN, Verevkin SP (2009) Re-investigation and data assessment of the isomerization and 2,2′-cyclization of stilbenes and azobenzenes. Ind Eng Chem Res 48(22):10120–10128. doi:10.1021/Ie900800q

    Article  CAS  Google Scholar 

  33. Eliel EL, Engelsman JJ (1996) The heats of combustion of gaseous cyclotetradecane and trans-stilbene—a tale of long-standing confusion. J Chem Educ 73(9):903–905. doi:10.1021/ed073p903

    Article  CAS  Google Scholar 

  34. Williams RB (1942) Heats of catalytic hydrogenation in solution. I. Apparatus, technique, and the heats of hydrogenation of certain pairs of stereoisomers. J Am Chem Soc 64:1395–1404. doi:10.1021/Ja01258a045

    Article  CAS  Google Scholar 

  35. Coops J, Hoijtink GJ (1950) Thermochemical investigations on arylethenes. I. Heats of combustion of phenylethenes. Recl Trav Chim Pays-Bas 69(3):358–367. doi:10.1002/recl.19500690316

    Article  CAS  Google Scholar 

  36. Brackman DS, Plesch PH (1952) Some physical properties of cis-stilbene. J Chem Soc (Jun):2188–2190. doi:10.1039/Jr9520002188

  37. Steele WV, Chirico RD, Knipmeyer SE, Nguyen A (2002) Vapor pressure, heat capacity, and density along the saturation line: measurements for benzenamine, butylbenzene, sec-butylbenzene, tert-butylbenzene, 2,2-dimethylbutanoic acid, tridecafluoroheptanoic acid, 2-butyl-2-ethyl-1,3-propanediol, 2,2,4-trimethyl-1,3-pentanediol, and 1-chloro-2-propanol. J Chem Eng Data 47(4):648–666. doi:10.1021/je010083e

    Article  CAS  Google Scholar 

  38. Agapito F, Santos RC, Martinho Simões JA (2013) Energetics of nonbonded ortho interactions in alkylbenzenes. J Phys Chem A 117(13):2873–2878. doi:10.1021/jp400475q

  39. Prosen EJ, Johnson WH, Rossini FD (1946) Heats of combustion and formation at 25°C of the alkylbenzenes through C10H14, and of the higher normal monoalkylbenzenes. J Res Natl Bureau Stand 36(5):455–461

    Article  CAS  Google Scholar 

  40. Santos RC, Leal JP (2012) A review on prediction methods for molar enthalpies of vaporization of hydrocarbons: the ELBA method as the best answer. J Phys Chem Ref Data 41(4):043101. doi:10.1063/1.4754596

    Article  Google Scholar 

  41. Ribeiro da Silva MAV, Santos LMNBF, Lima LMSS (2008) Standard molar enthalpies of formation and of sublimation of the terphenyl isomers. J Chem Thermodyn 40(3):375–385. doi:10.1016/j.jct.2007.08.008

    Article  CAS  Google Scholar 

  42. Verevkin SP, Ebenhoch J (1999) Strain energies of alpha-alkylsubstituted styrenes, 1,1-di-phenyl-ethene, tri-, and tetra-phenyl-ethene. Struct Chem 10(6):401–409. doi:10.1023/A:1022470804409

    Article  CAS  Google Scholar 

  43. Chickos JS, Hanshaw W (2004) Vapor pressures and vaporization enthalpies of the n-alkanes from C31 to C38 at T = 298.15 K by correlation gas chromatography. J Chem Eng Data 49(3):620–630. doi:10.1021/Je030236t

    Article  CAS  Google Scholar 

  44. Verevkin SP (1999) Thermochemical properties of triphenylalkanes and tetraphenylmethane. Strain in phenyl substituted alkanes. J Chem Eng Data 44(3):557–562. doi:10.1021/je9802726

    Article  CAS  Google Scholar 

  45. Verevkin SP (1999) Thermochemical properties of diphenylalkanes. J Chem Eng Data 44(2):175–179. doi:10.1021/je980200e

    Article  CAS  Google Scholar 

  46. Humphrey GL, Spitzer R (1950) Bond hybridization in the non-tetrahedral carbon atom. The heats of combustion of spiropentane and methylcyclobutane. J Chem Phys 18(6):902. doi:10.1063/1.1747806

    Article  CAS  Google Scholar 

  47. Verevkin SP (1998) Thermochemical properties of iso-propylbenzenes. Thermochim Acta 316(2):131–136. doi:10.1016/S0040-6031(98)00310-4

    Article  CAS  Google Scholar 

  48. Johnson WH, Prosen EJ, Rossini FD (1949) Heats of combustion and isomerization of the six C7H14 alkylcyclopentanes. J Res Natl Bureau Stand 42(3):251–255

    Article  CAS  Google Scholar 

  49. Colomina M, Jimenez P, Roux MV, Turrion C (1989) Thermochemical properties of 1,2,4,5-tetramethylbenzene, pentamethylbenzene, and hexamethylbenzene. J Chem Thermodyn 21(3):275–281. doi:10.1016/0021-9614(89)90017-7

    Article  CAS  Google Scholar 

  50. Verevkin SP (2006) Vapour pressures and enthalpies of vaporization of a series of the linear n-alkyl-benzenes. J Chem Thermodyn 38(9):1111–1123. doi:10.1016/j.jct.2005.11.009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Fundação para a Ciência e a Tecnologia (FCT), Portugal (PTDC/QUI/65535/2006, PTDC/QUI-QUI/110542/2009, and PEst-OE/QUI/UI0612/2011). R. M. B. S. thanks CBME/IBB, LA. R. C. S., T. S. A., and F. A. thank FCT for postdoctoral grants (SFRH/BPD/26610/2006, SFRH/BPD/20836/2004, and SFRH/BPD/74195/2010, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui C. Santos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4928 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Santos, R.C., Almeida, T.S., Agapito, F. et al. Thermodynamically sick molecules: searching for defective experimental enthalpies of formation values using empirical and quantum chemistry methods. Struct Chem 24, 2017–2026 (2013). https://doi.org/10.1007/s11224-013-0294-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0294-1

Keywords

  • Enthalpy of formation
  • Hydrocarbons
  • ELBA method
  • Quantum chemistry methods
  • Homodesmotic reactions