Advertisement

Structural Chemistry

, Volume 25, Issue 1, pp 115–126 | Cite as

DFT analysis: Fe4 cluster and Fe(110) surface interaction studies with pyrrole, furan, thiophene, and selenophene molecules

  • Rosa L. Camacho-Mendoza
  • Eliazar Aquino-Torres
  • Julian Cruz-BorbollaEmail author
  • Jose G. Alvarado-Rodríguez
  • Oscar Olvera-Neria
  • Jayanthi Narayanan
  • Thangarasu PandiyanEmail author
Original Research

Abstract

DFT studies of both the Fe4 cluster and the Fe(110) surface interaction with pyrrole, furan, thiophene, and selenophene showed that selenophene forms a stabler adsorbate iron complex than the other heterocyclic molecules; this is consistent with the binding energy data that were calculated between the Fe cluster and the Fe(110) surface with the heterocycles. Furthermore, when the adsorption of the compounds with the iron cluster was analyzed by molecular orbital studies, the orbitals of selenophene overlapped more strongly with the Fe atom than that of the other molecules. In TD-DFT, the π → π* peak observed for the molecules disappeared when they formed complexes, and there appeared a charge transfer band (ligand to metal), thus confirming the coordination of these molecules with the cluster. The data suggest that the chemisorption is an exothermic process.

Keywords

DFT Heterocyclic Iron clusters Fe(110) surface corrosion inhibition 

Notes

Acknowledgments

J.C and E. A deeply acknowledge financial support from CONACYT under Project 106474, and R.L.C for financial support from CONACYT under Project 162784. T.P thanks Dirección General de Asuntos del Personal Académico (Project PAPIIT No. IN217813). The authors also thank DGSCA-UNAM for providing the computational facilities.

References

  1. 1.
    Khanna SN, Linderoth S (1991) Phys Rev Lett 67:742–745CrossRefGoogle Scholar
  2. 2.
    Harutyunyan AR, Tokune T, Mora E (2005) Appl Phys Lett 86:153113–153115CrossRefGoogle Scholar
  3. 3.
    Harutyunyan AR, Tokune T, Mora E (2005) Appl Phys Lett 87:051919–051921CrossRefGoogle Scholar
  4. 4.
    Schnabel P, Irion MP, Weil KG (1991) J Phys Chem 95:9688–9694CrossRefGoogle Scholar
  5. 5.
    Jongh Jos de (1999) Physical properties of metal cluster compounds. Model systems for nanosized metal particles. Wiley-VCH, New YorkGoogle Scholar
  6. 6.
    Haberland H (1994) Clusters of atoms and molecules. Springer, BerlinGoogle Scholar
  7. 7.
    Castleman AW, Jena P (2006) Proc Nat Acad Sci USA 103:10552–10553Google Scholar
  8. 8.
    Cruz J, Martinez-Aguilera LMR, Salcedo R, Castro M (2001) Int J Quantum Chem 85:546–556CrossRefGoogle Scholar
  9. 9.
    Cruz J, Garcia-Ochoa E, Castro M (2003) J Electrochem Soc 150:25–35CrossRefGoogle Scholar
  10. 10.
    Cruz J, Pandiyan T, Garcia-Ochoa E (2005) J Electroanal Chem 1:8–16CrossRefGoogle Scholar
  11. 11.
    Jovancicevic V, Ramachandran S, Prince P (1999) Corrosion 55:449–455CrossRefGoogle Scholar
  12. 12.
    Lukovits L, Kalman E, Zucchi F (2001) Corrosion 57:3–8CrossRefGoogle Scholar
  13. 13.
    Bentiss F, Lagrenee M, Traisnel M, Hornez JC (1999) Corros Sci 41:789–803CrossRefGoogle Scholar
  14. 14.
    Sastri VS (1998) Corrosion inhibitors-principles and applications. Wiley, ChichesterGoogle Scholar
  15. 15.
    Martinez S, Stagljar I (2003) J Mol Struct (Theochem) 640:167–174CrossRefGoogle Scholar
  16. 16.
    Turcio-Ortega D, Pandiyan T, Cruz J, Garcia-Ochoa E (2007) J Phys Chem C 111:9853–9866CrossRefGoogle Scholar
  17. 17.
    Camacho RL, Montiel E, Jayanthi N, Pandiyan T, Cruz J (2010) Chem Phys Lett 485:142–151CrossRefGoogle Scholar
  18. 18.
    Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Chem Phys Lett 313:91–97CrossRefGoogle Scholar
  19. 19.
    Satishkumar BC, Goyindaraj A, Sen R, Rao CNR (1998) Chem Phys Lett 293:47–52CrossRefGoogle Scholar
  20. 20.
    Li S, Zhang J, Gao H, Zhou W, Zhou Z (2010) J Mol Struct (Theochem) 948:108–110CrossRefGoogle Scholar
  21. 21.
    Rahimi A, Namyslo JC, Drafz MHH, Halm J, Cubner EH, Nieger M, Rautzenberg N, Schmidt A (2011) J Org Chem 76:7316–7325CrossRefGoogle Scholar
  22. 22.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  23. 23.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc., WallingfordGoogle Scholar
  24. 24.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  25. 25.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396CrossRefGoogle Scholar
  26. 26.
    Kupka T, Wrzalik R, Pasterna G, Pasterny K (2002) J Mol Struct 616:17–32CrossRefGoogle Scholar
  27. 27.
    Pasterny K, Wrzalik R, Kupka T, Pasterna G (2002) J Mol Struct 614:297–304CrossRefGoogle Scholar
  28. 28.
    Snavely DL, Blackburn FR, Ranasinghe Y, Walters VA, Del riego MG (1992) J Phys Chem 96:3599–3605CrossRefGoogle Scholar
  29. 29.
    Jensen F (2008) Introduction computational chemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  30. 30.
    Hay JP, Wadt WR (1985) J Chem Phys 82:270–283CrossRefGoogle Scholar
  31. 31.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  32. 32.
    Bader RFW (1990) Atoms in molecules, a quantum theory. Clarendon Press, OxfordGoogle Scholar
  33. 33.
    Adamo C, Scuseria GE, Barone V (1999) J Chem Phys 111:2889–2899CrossRefGoogle Scholar
  34. 34.
    O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839–845CrossRefGoogle Scholar
  35. 35.
    Kreese G, Furthmüller J (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  36. 36.
    Kreese G, Furthmüller J (1996) Comput Mat Sci 6:15–50CrossRefGoogle Scholar
  37. 37.
    Blöchl PE (1994) Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  38. 38.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  39. 39.
    Jiang DE, Carter EA (2005) Surf Sci 583:60–68CrossRefGoogle Scholar
  40. 40.
    Ahmed F, Nixon E (1979) J Chem Phys 71:3547–3549CrossRefGoogle Scholar
  41. 41.
    Bader RFW, Beddall PM (1972) J Chem Phys 56:3320–3330CrossRefGoogle Scholar
  42. 42.
    Bader RFW (1991) Chem Rev 91:893–928CrossRefGoogle Scholar
  43. 43.
    Wu S-Y, Su C-H, Chang J-G, Chen H-T, Hou C-H, Chen H-L (2011) Comput Mater Sci 50:3311–3314CrossRefGoogle Scholar
  44. 44.
    Perdew JP, Schmidt K (2001) Density functional theory and its application to materials. American Instiute of Physics, MelvilleGoogle Scholar
  45. 45.
    Kwiatkowski JS, Leszczynski J, Teca I (1997) J Mol Struct 437:451–480CrossRefGoogle Scholar
  46. 46.
    Pearson RG (1988) Inorg Chem 27:734–740CrossRefGoogle Scholar
  47. 47.
    Navarro R, Orza JM (1983) Anales De Química Serie a-Química Física y Química Técnica 79:571–575Google Scholar
  48. 48.
    Navarro R, Orza JM (1983) Anales de Quimica Serie a-Química Fisica y Quimica-Técnica 79:557–570Google Scholar
  49. 49.
    Cervantes SK, Seminario JM (2012) J Mol Model 18:4043–4052CrossRefGoogle Scholar
  50. 50.
    Ballone P, Jones RO (1995) Chem Phys Lett 233:632–638CrossRefGoogle Scholar
  51. 51.
    Dieguez O, Alemany MMG, Rey C, Ordejón P, Gallego LJ (2001) Phys Rev B 63:205407CrossRefGoogle Scholar
  52. 52.
    Chrétien s, Salahub DR (2002) Phys Rev B 66:155425–155437CrossRefGoogle Scholar
  53. 53.
    Gutsev GL (2002) Phys Rev B 65:132417CrossRefGoogle Scholar
  54. 54.
    Oda T, Pasquarello A, Car R (1998) Phys Rev Lett 80:3622–3625CrossRefGoogle Scholar
  55. 55.
    Gutsev GL, Weatherford CA, Jena P, Johnson E, Ramachandran BR (2012) J Phy Chem A 41:10218–10228CrossRefGoogle Scholar
  56. 56.
    Castro M (2007) Chem Phys Lett 435:322–326CrossRefGoogle Scholar
  57. 57.
    Gutsev GL, Bauschlicher CW (2003) J Phys Chem A 107(36):7013–7023CrossRefGoogle Scholar
  58. 58.
    Valencia I, Tavizón G, Barba B, Castro M (2011) Chem Phys 390:51–59CrossRefGoogle Scholar
  59. 59.
    Wan J, Meller J, Hada M, Ehara M, Nakatsuji H (2000) J Phys Chem 113:7853–7866CrossRefGoogle Scholar
  60. 60.
    Jacquemin D, Perpète E, Ciofini I, Adamo C (2010) J Chem Theory Comput 6:1532–1537CrossRefGoogle Scholar
  61. 61.
    King R (2008) J Phys Chem A 112:5727–5733CrossRefGoogle Scholar
  62. 62.
    Wan J, Hada M, Ehara M, Nakatsuji H (2000) J Chem Phys 114:842–850CrossRefGoogle Scholar
  63. 63.
    Hieringer W, Stan JA, Van Gisbergen, Baerends J (2002) J Phys Chem A 106:10380–10390CrossRefGoogle Scholar
  64. 64.
    Varsányi G, Nyulászi L, Veszprémi T, Narisawa T (1982) J Chem Soc Perkin Trans 2:761–765CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rosa L. Camacho-Mendoza
    • 1
  • Eliazar Aquino-Torres
    • 1
  • Julian Cruz-Borbolla
    • 1
    Email author
  • Jose G. Alvarado-Rodríguez
    • 1
  • Oscar Olvera-Neria
    • 2
  • Jayanthi Narayanan
    • 3
  • Thangarasu Pandiyan
    • 4
    Email author
  1. 1.Área Académica de QuímicaUniversidad Autónoma del Estado de Hidalgo, Unidad UniversitariaPachucaMexico
  2. 2.Área de Física Atómica Molecular Aplicada (FAMA), CBIUniversidad Autónoma Metropolitana-AzcapotzalcoMexicoMexico
  3. 3.División de Ingeniería en NanotecnologíaUniversidad Politécnica del Valle de MéxicoTultitlánMexico
  4. 4.Facultad de Química, Universidad Nacional Autónoma de MéxicoCiudad UniversitariaMéxicoMexico

Personalised recommendations