Skip to main content
Log in

Experimental and computational study of the thermal decomposition of 3-buten-1-ol in m-xylene solution

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

An experimental study of the thermal decomposition of a β-hydroxy alkene, 3-buten-1-ol, in m-xylene solution, has been carried out at three different temperatures: 553.15, 573.15, and 593.15 K. The temperature dependence of the rate constants for the decomposition of this compound in the corresponding Arrhenius equation is given by ln k (s−1) = (27.34 ± 1.24)–(19,328 ± 712) (kJ mol−1T −1. A computational study has been performed at the MP2/6-31+G(d) level of theory to calculate the rate constants and the activation parameters by the classical transition state theory. The Arrhenius equation obtained theoretically, ln k (s−1) = (28.252 ± 0.025)–(19,738.0 ± 14.4) (kJ mol−1T −1, agrees very satisfactorily with the experimental one. The bonding characteristics of reactant, transition state, and products have been investigated by the natural bond orbital analysis which provides the natural atomic charges and the Wiberg bond indices used to follow the progress of the reaction. The enthalpy of the reaction has been calculated using experimental values taken from literature and theoretic calculations. The agreement between both values is satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith GG, Yates BL (1965) J Chem Soc 7242-7246

  2. Arnold RT, Smolinsky G (1960) J Org Chem 25:129-130

    Google Scholar 

  3. Smith GG, Taylor R (1961) Chem Ind 949-950

  4. Quijano J, David J, Sánchez C, Rincón E, Guerra D, León LA, Notario R, Abboud JL (2002) J Mol Struct (Theochem) 580:201–205

    Article  CAS  Google Scholar 

  5. DePuy CH, King RW (1960) Chem Rev 60:431–457

    Article  CAS  Google Scholar 

  6. Smith GG, Blau SE (1964) J Phys Chem 68:1231–1234

    Article  CAS  Google Scholar 

  7. Zapata E, Gaviria J, Quijano J (2007) Int J Chem Kinet 39:92–96

    Article  CAS  Google Scholar 

  8. Murillo J, Henao D, Vélez E, Castaño C, Quijano J, Gaviria J, Zapata E (2012) Int J Chem Kinet 44:407–413

    Article  CAS  Google Scholar 

  9. Glasstone KJ, Laidler KJ, Eyring H (1941) The theory of rate processes, Chap 4. McGraw-Hill, New York

    Google Scholar 

  10. Benson SW (1969) The foundations of chemical kinetics. McGraw-Hill, New York

    Google Scholar 

  11. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1, Gaussian Inc., Wallingford

  12. Møller C, Plesset M (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  13. Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683–11700

    Article  CAS  Google Scholar 

  14. McQuarrie DA, Simon JD (1999) Molecular thermodynamics. University Science Books, Sausalito

    Google Scholar 

  15. Fukui K (1970) J Phys Chem 74:4161–4163

    Article  CAS  Google Scholar 

  16. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  17. Wohlfarth C (1955) In: Lide RD (ed) CRC handbook of chemistry and physics. CRC, Boca Raton, pp 185–199

    Google Scholar 

  18. Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073

    Article  CAS  Google Scholar 

  19. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  20. Wiberg KB (1968) Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  21. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1988) NBO Version 3.1, Madison

  22. Moyano A, Pericàs MA, Valentí E (1989) J Org Chem 54:573–582

    Article  CAS  Google Scholar 

  23. Vélez E, Quijano J, Gaviria J, Roux MV, Jiménez P, Temprado M, Martín-Valcárcel G, Pérez-Parajón J, Notario R (2005) J Phys Chem A 109:7832–7838

    Article  Google Scholar 

  24. Pedley JB (1994) Thermochemical data and structures of organic compounds, vol. 1, TRC data series, TRC, College Satation

Download references

Acknowledgments

This study is supported by the research funds provided by Universidad Nacional de Colombia, Project “201010011033”, “Estudio Computacional y Experimental de la Eliminación de 3-Metil-3-buten-1-ol en Solución de m-Xileno,” DIME 2012, Modalidad 2.” R.N. thanks the financial support of the Spanish Ministerio de Economía y Competitividad under Project CTQ2010-16402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor López.

Additional information

This article is dedicated to María Victoria Roux on the occasion of her retirement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, V., Quijano, J., Luna, S. et al. Experimental and computational study of the thermal decomposition of 3-buten-1-ol in m-xylene solution. Struct Chem 24, 1811–1816 (2013). https://doi.org/10.1007/s11224-013-0234-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0234-0

Keywords

Navigation