Skip to main content

Theoretical study on the structures and stabilities of silacyclopropylidenoids

Abstract

Isomeric structures, energies, and properties of silacyclopropylidenoids, C2H4SiMX (where M = Li or Na and X = F, Cl or Br), were studied ab initio at the HF and MP2 levels of theory using the 6-31+G(d,p) and aug-cc-pVTZ basis sets. The calculations indicate that each of C2H4SiMXs has three stationary structures: silacyclopropylidenoid (S), tetrahedral (T), and inverted (I). All of the silacyclopropylidenoid (S) forms are energetically more stable than others except that S-LiF is by only 0.7 kcal/mol higher in energy than I-LiF. In contrast, all of the tetrahedral (T) forms are the most unstable ones except for T-NaF. Energy differences between S, T, and I forms range from 0.70 to 8.70 kcal mol−1 at the MP2/6-31+G(d,p) level. In addition, the molecular electrostatic potential maps, natural bond orbitals, and frontier molecular orbitals were calculated at the MP2/6-31+G(d,p) level.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Backes J, Brinker UH (1989) In: Regitz M (ed) Methoden der Organischen Chemie (Houben-Weyl), vol E19b, Thieme, Stuttgart, pp 391–510

  2. 2.

    Siegel H (1982) Top Curr Chem 106:55

    Article  CAS  Google Scholar 

  3. 3.

    Sydnes LK (2003) Chem Rev 103:1133

    Article  CAS  Google Scholar 

  4. 4.

    de Meijere A, Schill H, Kozhushkov SI, Walsh R, Müller EM, Grubmüller H (2004) Russ Chem Bull Int Ed 53:947

    Article  Google Scholar 

  5. 5.

    Sigal N, Apeloig Y (2001) J Organomet Chem 636:148

    Article  CAS  Google Scholar 

  6. 6.

    Escudie J, Ranaivonjatovo H, Bouslikhane M, Harouch YE, Baiget L, Nemes GC (2004) Russ Chem Bull Int Ed 53:1020

    Article  CAS  Google Scholar 

  7. 7.

    Escudie J, Ranaivonjatovo H (2007) Organometallics 26:1542

    Article  CAS  Google Scholar 

  8. 8.

    Azizoglu A, Yildiz CB (2010) Organometallics 29:6739

    Article  CAS  Google Scholar 

  9. 9.

    Azizoglu A, Özen R, Hökelek T, Balci M (2004) J Org Chem 69:1202

    Article  CAS  Google Scholar 

  10. 10.

    Christl M, Brauen M, Fischer H, Groetsch S, Müller G, Leusser D, Deurlein S, Stalke D, Arnone M, Engels B (2006) Eur J Org Chem 2006:5045

    Article  Google Scholar 

  11. 11.

    Azizoglu A, Demirkol O, Kilic T, Yildiz YK (2007) Tetrahedron 63:2409

    Article  CAS  Google Scholar 

  12. 12.

    Azizoglu A, Balci M, Mieusset JL, Brinker UH (2008) J Org Chem 73:8182

    Article  CAS  Google Scholar 

  13. 13.

    Kilbas B, Azizoglu A, Balci M (2009) J Org Chem 74:7075

    Article  CAS  Google Scholar 

  14. 14.

    Sedenkova KN, Averina EB, Grishin YK, Rybakov VB, Kuznetzova TS, Zefirov NS (2010) Eur J Org Chem 2010:4145

    Article  Google Scholar 

  15. 15.

    Doering WvE, LaFlamme PM (1958) Tetrahedron 2:75

    Article  Google Scholar 

  16. 16.

    Moore WR, Ward HR (1960) J Org Chem 25:2073

    Article  CAS  Google Scholar 

  17. 17.

    Skattebøl L (1961) Tetrahedron Lett 5:167

    Article  Google Scholar 

  18. 18.

    Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  19. 19.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,Cheeseman JR, Montgomery JA, Vreven NJ, Kudin TK, Burant JC, Millam JM, Iyengar SS, Tomasi JB, Mennucci V, Cossi BM, Scalmani GN, Rega G, Petersson A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg J, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi IR, Martin LD, Fox J, Keith T, AlLaham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM, Johnson WB, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Revision C02. Gaussian, Inc., Pittsburgh

  20. 20.

    Wiberg KB (1968) Tetrahedron 24:1083

    Article  CAS  Google Scholar 

  21. 21.

    Politzer P, Landry SJ, Warnheim T (1982) J Phys Chem 86:4767

    Article  CAS  Google Scholar 

  22. 22.

    Politzer P, Abrahmsen L, Sjoberg P (1984) J Am Chem Soc 106:855

    Article  CAS  Google Scholar 

  23. 23.

    Dennington R, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2003) GaussView, Version 3.09, Semichem, Inc., Shawnee Mission

  24. 24.

    Barthelat JC, Trinquier G, Bertrand G (1979) J Am Chem Soc 101:3785

    Article  CAS  Google Scholar 

  25. 25.

    Su MD, Amos RD, Handy NC (1990) J Am Chem Soc 112:1499

    Article  CAS  Google Scholar 

  26. 26.

    Flock M, Marschner C (2005) Chem Eur J 11:4635

    Article  CAS  Google Scholar 

  27. 27.

    Feng S, Feng D (2001) J Mol Struct (Theochem) 541:171

    Article  CAS  Google Scholar 

  28. 28.

    Xie J, Feng D, Feng S, Ding Y (2007) Struct Chem 18:65

    Article  CAS  Google Scholar 

  29. 29.

    Gomez PC, Palafox MA, Pacios LA (1999) J Phys Chem A 103:8537

    Article  CAS  Google Scholar 

  30. 30.

    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  31. 31.

    Reed AE, Schleyer PvR (1990) J Am Chem Soc 112:1434

    Article  CAS  Google Scholar 

  32. 32.

    Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, London

    Google Scholar 

  33. 33.

    Azizoglu A (2003) Struct Chem 14:575

    Article  CAS  Google Scholar 

  34. 34.

    Azizoglu A, Ozer Z, Kilic T (2011) Collect Czech Chem Commun 76:95

    Article  CAS  Google Scholar 

  35. 35.

    Odabasioglu S, Kurtaran R, Azizoglu A, Kara H, Oz S, Atakol O (2009) Cent Eur J Chem 7:402

    Article  CAS  Google Scholar 

  36. 36.

    Tanak H, Koksal Y, Ünver Y, Yavuz M, Isik S, Sancak K (2009) Struct Chem 20:409

    Article  CAS  Google Scholar 

  37. 37.

    Ugras HI, Cakir U, Azizoglu A, Kılıc T, Erk C (2006) J Incl Phenom Macrocycl Chem 55:159

    Article  CAS  Google Scholar 

  38. 38.

    Turker L, Azizoglu A (2001) J Mol Struct (Theochem) 535:151

    Article  CAS  Google Scholar 

  39. 39.

    Alpaslan G, Tanak H, Alaman AA, Erdonmez A, Isik S (2010) Struct Chem 21:1027

    Article  CAS  Google Scholar 

  40. 40.

    Jovanovski G, Cahil A, Grupce O, Pejov L (2006) J Mol Struct 784:7

    Article  CAS  Google Scholar 

  41. 41.

    Luque FJ, Lopez JM, Orozco M (2000) Theor Chem Acc 103:343

    Article  CAS  Google Scholar 

  42. 42.

    Alpaslan G, Macit M, Erdonmez A, Buyukgungor O (2011) Struct Chem 22:681

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported financially by the Scientific and Technological Research Council of Turkey (Grant No. TUBITAK TBAG 210T113). We are also grateful to the reviewer’s valuable suggestions that improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Akın Azizoglu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yıldız, C.B., Azizoglu, A. Theoretical study on the structures and stabilities of silacyclopropylidenoids. Struct Chem 23, 1777–1784 (2012). https://doi.org/10.1007/s11224-012-9981-6

Download citation

Keywords

  • Silacyclopropylidenes
  • Organosilicon
  • Ab initio
  • Computational study