Skip to main content
Log in

Theoretical study of highly doped heterofullerenes evolved from the smallest fullerene cage

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The structural stabilities and electronic properties of C12X8 heterofullerenes where X = B, Al, Ga, C, Si, Ge, N, P, and As are probed at the MP2/6-311+G*//B3LYP/6-31+G* level of theory. Vibrational frequency calculations show that all the systems are true minima. Probing the geometries show the contraction of C=C double bonds to compensate for the longer C–X bonds. The calculated binding energies of C12P8 and C12B8, 5.93 and 5.81 eV/atom, respectively, show them the most stable heterofullerenes of all. While Si, Ge, Al, and Ga doping increase the conductivity of fullerene through decreasing its HOMO–LUMO gap, B, N, P, and As doping enhance its stability against electronic excitations via increasing the gap. High charge transfer on the surfaces of our stable heterofullerenes, especially C12Al8, C12Si8, and C12Ga8, provokes further investigations on their possible application for hydrogen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kroto HW, Health JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Türker L (2002) J Mol Struct 593:149–153

    Google Scholar 

  3. Türker L (2003) J Mol Struct 624:233–237

    Google Scholar 

  4. Prinzbach H, Weller A, Landenberger P, Wahl F, Worth J, Scott LT, Gelmont M, Olevano D, Issendorff BV (2000) Nature 407:60–63

    Article  CAS  Google Scholar 

  5. Huda MN, Ray AK (2008) Chem Phys Lett 457:124–129

    Article  CAS  Google Scholar 

  6. Momeni MR, Shakib FA (2010) Chem Phys Lett 492:137–141

    Article  CAS  Google Scholar 

  7. Shakib FA, Momeni MR (2011) Phys B 406:1471–1476

    Article  CAS  Google Scholar 

  8. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  9. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  10. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  11. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, AlLaham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (1998) Gaussian Inc., Pittsburgh

  12. Hariharan PC, Pople JA (1974) Mol Phys 27:209–214

    Article  CAS  Google Scholar 

  13. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  14. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  15. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  16. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  17. Moller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  CAS  Google Scholar 

  18. Krishna R, Frisch MJ, Pople JA (1980) J Chem Phys 72:4244–4245

    Article  Google Scholar 

  19. Glendening ED, Reed AE, Carpenter JE, Weinhold F NBO Version 3.1

  20. Hirsch A, Chen Z, Jiao H (2000) Angew Chem Int Ed 39:3915–3917

    Article  CAS  Google Scholar 

  21. Chen Z, Heine T, Jiao H, Hirsch A, Thiel W, Schleyer PvR (2004) Chem Eur J 10:963–970

    Article  CAS  Google Scholar 

  22. Ott AK, Rechtsteiner GA, Felix C, Hampe O, Jarrold MF, Duyne RPV, Raghavachari K (1998) J Chem Phys 109:9652–9655

    Article  CAS  Google Scholar 

  23. Alder RW, Blake M, Oliva JM (1999) J Phys Chem A 103:11200–11211

    Article  CAS  Google Scholar 

  24. Hoffmann R, Schleyer PvR, Schaefer HF III (2008) Angew Chem Int Ed 47:7164–7167

    Article  Google Scholar 

  25. Alder RW, Harvey JN, Schleyer PvR, Moran D (2001) Org Lett 3:3233–3236

    Article  CAS  Google Scholar 

  26. Itoh S (1997) Diam Films Technol 7:195–209

    CAS  Google Scholar 

  27. Froudakis GE (2001) Nano Lett 1:531–533

    Article  CAS  Google Scholar 

  28. Menon M, Richter E, Mavrandonakis A, Froudakis GE, Andriotis AN (2004) Phys Rev B 69:115322-1–115322-4

    Article  Google Scholar 

  29. Mavrandonakis A, Froudakis GE, Schnell M, Muhlhauser M (2003) Nano Lett 3:1481–1484

    Article  CAS  Google Scholar 

  30. Mpourmpakis G, Froudakis GE, Lithoxoos GP, Samios J (2006) Nano Lett 6:1581–1583

    Article  CAS  Google Scholar 

  31. Tang C, Zhu W, Deng K (2009) J Mol Struct 909:43–48

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Shakib.

Electronic supplementary material

Frontier molecular orbitals, and Cartesian coordinates for all calculated structures.

Supplementary material 1 (DOC 952 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naderi, F., Momeni, M.R. & Shakib, F.A. Theoretical study of highly doped heterofullerenes evolved from the smallest fullerene cage. Struct Chem 23, 1503–1508 (2012). https://doi.org/10.1007/s11224-012-9958-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-9958-5

Keywords

Navigation