Advertisement

Structural Chemistry

, Volume 24, Issue 5, pp 1565–1570 | Cite as

Functionalization of BN nanosheet with N2H4 may be feasible in the presence of Stone–Wales defect

  • Javad Beheshtian
  • Ali Ahmadi PeyghanEmail author
  • Zargham Bagheri
Original Research

Abstract

Following recent experimental works, herein we investigated chemical functionalization of a BN graphene-like sheet with hydrazine (N2H4) molecule based on the density functional theory. We found that the functionalization of the pristine sheet is not possible; while the presence of some structural defects such as Stone–Wales is essential to make it feasible. Functionalization energy of the defected sheet is calculated to be in the range of −6.1 to −7.4 kcal/mol at B3LYP/6-31G (d) level. Based on the obtained results, the functionalized BN sheet is found to be more soluble in water in comparison with the pristine sheet which is in good agreement with previous experimental reports. Also, it was found that the electronic properties of the defected sheet are slightly changed upon the chemical functionalization.

Keywords

Adsorption DFT B3LYP Graphene-like Hydrazine 

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666CrossRefGoogle Scholar
  2. 2.
    Hargittai I (2010) Struct Chem 21:1151CrossRefGoogle Scholar
  3. 3.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197CrossRefGoogle Scholar
  4. 4.
    Geim AK, Novoselov KS (2007) Nat Mater 6:183CrossRefGoogle Scholar
  5. 5.
    Warner JH, Rümmeli MH, Bachmatiuk A, Büchner B (2010) ACS Nano 4:1299CrossRefGoogle Scholar
  6. 6.
    Nag A, Raidongia K, Hembram KPSS, Datta R, Wanghmare UV, Rao CNR (2010) ACS Nano 4:1539CrossRefGoogle Scholar
  7. 7.
    Preobrajenski AB, Nesterov MA, Ng ML, Vinogradov AS, Mårtensson N (2007) Chem Phys Lett 446:119CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Tan YW, Storner HL, Kim P (2005) Nature (London) 438:201CrossRefGoogle Scholar
  9. 9.
    Novoselov KS, McCann E, Morozov SV, Fal’ko VI, Katsnelson MI, Zeitler U, Jiang D, Schedin F, Geim AK (2006) Nat Phys 2:177CrossRefGoogle Scholar
  10. 10.
    Katsnelson MI, Novoselov KS, Geim AK (2006) Nat Phys 2:620CrossRefGoogle Scholar
  11. 11.
    Lin Y, Williams TV, Xu TB, Cao W, Elsayed-Ali HE, Connell JW (2011) J Phys Chem C 115:2679CrossRefGoogle Scholar
  12. 12.
    Lin Y, Williams TV, Connell JW (2010) J Phys Chem Lett 1:277CrossRefGoogle Scholar
  13. 13.
    Nazarov AS, Demin VN, Grayfer ED, Bulavchenko AI, Arymbaeva AT, Shin HJ, Choi JY, Fedrov VE (2012) Chem Asian J 7:554CrossRefGoogle Scholar
  14. 14.
    Schmidt M, Baldridge K, Boatz J, Elbert S, Gordon M, Jensen J, Koseki S, Matsunaga N, Nguyen K, Su S, Windus T, Dupuis M (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  15. 15.
    O’Boyle N, Tenderholt A, Langner K (2008) J Comput Chem 29:839CrossRefGoogle Scholar
  16. 16.
    Contreras M, Avila D, Alvarez J, Rozas R (2010) Struct Chem 21:573CrossRefGoogle Scholar
  17. 17.
    Tetasang S, Keawwangchai S, Wanno B, Ruangpornvisuti V (2012) Struct Chem 23:7CrossRefGoogle Scholar
  18. 18.
    Dinadayalane TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) J Chem Theor Comput 6:1351CrossRefGoogle Scholar
  19. 19.
    Gan L-H, Chang Q, Xu L, Liu Z-H, Du J, Tao C-Y (2012) Struct Chem 23:711CrossRefGoogle Scholar
  20. 20.
    Peng S, Li X, Zhang D, Zhang Y (2009) Struct Chem 20:789CrossRefGoogle Scholar
  21. 21.
    Ahmadi Peyghan A, Omidvar A, Hadipour NL, Bagheri Z, Kamfiroozi M (2012) Physica E 44:1357CrossRefGoogle Scholar
  22. 22.
    Beheshtian J, Ahmadi Peyghan A, Bagheri Z (2012) Physica E 44:1963CrossRefGoogle Scholar
  23. 23.
    Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012) J Mol Model 18:2653CrossRefGoogle Scholar
  24. 24.
    Tomić S, Montanari B, Harrison NM (2008) Phys E 40:2125CrossRefGoogle Scholar
  25. 25.
    Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) ACS Nano 4:2979CrossRefGoogle Scholar
  26. 26.
    Dinadayalane TC, Leszczynski J (2007) Chem Phys Lett 434:86CrossRefGoogle Scholar
  27. 27.
    Zhang YH, Zhou KG, Gou XC, Xie KF, Zhang KL, Peng Y (2010) Chem Phys Lett 484:266CrossRefGoogle Scholar
  28. 28.
    Andzelm J, Kolmel C (1995) J Chem Phys 103:9312CrossRefGoogle Scholar
  29. 29.
    Foresman JB, Frisch AE (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian, PittsburghGoogle Scholar
  30. 30.
    Lewars E (2003) Computational chemistry-introduction to the theory and applications of molecular and quantum mechanics. Kluwer Academic, NorwellGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Javad Beheshtian
    • 1
  • Ali Ahmadi Peyghan
    • 2
    Email author
  • Zargham Bagheri
    • 3
  1. 1.Department of ChemistryShahid Rajaee Teacher Training UniversityTehranIran
  2. 2.Young Researchers ClubIslamic Azad University, Islamshahr BranchIslamshahrIran
  3. 3.Physics Group, Science DepartmentIslamic Azad University, Islamshahr BranchIslamshahrIran

Personalised recommendations