Skip to main content

Synthesis, Raman, X-ray diffraction, and density functional studies of antimony(III) heterotetracycles displaying intramolecular transannular interactions O → Sb

Abstract

A set of compounds of general formula [{S(C6H3S)2O}SbHal] [Hal = Cl (1), Br (2), I (3)] has been synthesized and studied by Raman and NMR spectroscopy as well as quantum chemical DFT calculations. X-ray diffraction studies of compound 2 revealed that the oxygen atom participates as donor and the antimony atom plays the role of acceptor, adopting a Ψ-distorted trigonal bi-pyramidal geometry, where the eight-membered central ring displays a boat–boat conformation. Furthermore, a series of DFT calculations was performed on compounds 1–3 as well as calculations on the non-synthesized heterotetracyclic systems [{S(C6H3S)2O}SbF] (4a) and the cation [{S(C6H3S)2O}Sb]+ (5a). The theoretic study at DFT level indicates as the electronegativity increases at exocyclic substituent along the set of compounds, the interaction is stronger. Moreover, the topological analysis of electronic density showed the existence of critical points along the O → Sb direction which prompted us to suggest the existence of a dative bond.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Cea-Olivares R, García-Montalvo V, Moya-Cabrera MM (2005) Coord Chem Rev 249:859

    Article  CAS  Google Scholar 

  2. Baukov YI, Tandura SN (2002) In: Rappoport Z (ed) Hypervalent compounds of organic germanium, tin and lead derivatives, vol 2. Wiley, West Sussex, p 963

    Chapter  Google Scholar 

  3. Akiba K-y (1999) Chemistry of hypervalent compounds. Wiley, New York

    Google Scholar 

  4. Kakusawa N, Kurita J (2006) Heterocycles 68:1335

    Article  CAS  Google Scholar 

  5. Kakusawa N, Tobiyasu Y, Yasuike S, Yamaguchi K, Seki H, Kurita J (2006) J Organomet Chem 691:2953

    Article  CAS  Google Scholar 

  6. Shimada S, Yamazaki O, Tanaka T, Rao MLN, Suzuki Y, Tanaka M (2003) Angew Chem Int Ed 42:1845

    Article  CAS  Google Scholar 

  7. Kakusawa N, Tobiyasu Y, Yasuike S, Yamaguchi K, Seki H, Kurita J (2003) Tetrahedron Lett 44:8589

    Article  CAS  Google Scholar 

  8. Riggleman S, DeShong P (2003) J Org Chem 68:8106

    Article  CAS  Google Scholar 

  9. Faller JW, Kultyshev RG (2002) Organometallics 21:5911

    Article  CAS  Google Scholar 

  10. Zickgraf A, Braü E, Dräger M (1998) Spectrochim Acta A 54:85

    Article  Google Scholar 

  11. Kociok-Köhn G, Molloy KC, Rodríguez-Castro J (2008) Inorg Chem Commun 11:599

    Article  Google Scholar 

  12. Alvarado-Rodríguez JG, Andrade-López N, González-Montiel S, Merino G, Vela A (2003) Eur J Inorg Chem 3554

  13. Alvarado-Rodríguez JG, González-Montiel S, Andrade-López N, López-Feliciano LB (2007) Polyhedron 26:2929

    Article  Google Scholar 

  14. Flores-Chávez B, Alvarado-Rodríguez JG, Andrade-López N, García-Montalvo V, Aquino-Torres E (2009) Polyhedron 28:782

    Article  Google Scholar 

  15. Martínez-Otero D, Flores-Chávez B, Alvarado-Rodríguez JG, Andrade-López N, Cruz-Borbolla J, Pandiyan T, Jancik V, González-Jiménez E, Jardínez C (2012) Polyhedron 1:40

    Google Scholar 

  16. González-Montiel S, Flores-Chávez B, Alvarado-Rodríguez JG, Andrade-López N, Cogordan JA (2009) Polyhedron 28:467

    Article  Google Scholar 

  17. Sheldrick GM (1998) SHEXTL 5.10. Bruker AXS Inc, Madison, WI

  18. SADABS (1996) Area-detector absorption correction. Siemens Industrial Automation, Inc., Madison

    Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman R, Scalmani G, Barone V,Mennucci B, Petersson, GA, Nakatsuji, H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao YO, Nakai H, Vreve T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.I. Gaussian, Inc., Wallingford, CT

  20. Bader RFW (2000) AIM2000 Program v 1.0 McMaster University, Hamilton

  21. González-Montiel S, Andrade-López N, Alvarado-Rodríguez JG (2006) Eur J Inorg Chem 3762

  22. Agocs L, Brian GG, Burford N, Cameron TS, Kwiatkowski W, Robertson KN (1997) Inorg Chem 36:2855

    Article  CAS  Google Scholar 

  23. Burford N, Royan BW (1989) J Chem Soc Chem Commun 19

  24. Burford N, Parkes TM, Pradip KB, Cameron TS (1994) Angew Chem Int Ed 33:1267

    Article  Google Scholar 

  25. Hoffmann HM, Dräeger M (1985) J Organomet Chem 295:33

    Article  CAS  Google Scholar 

  26. Muñoz-Hernández MA, Cea-Olivares R, Hernández-Ortega S (1996) Z Anorg Allg Chem 622:1392

    Article  Google Scholar 

  27. Porterfield WW (1993) Inorganic chemistry: a unified approach. Academic Press, Inc., San Diego [r cov (Sb) = 1.40, r cov (O) = 0.73, r cov (S) = 1.02, r cov (Br) = 1.14, r vdW (O) = 1.52, r vdW (S) = 1.80, r vdW (Br) = 1.85 Å]

  28. Bondi A (1964) J Phys Chem 68:441

    Article  CAS  Google Scholar 

  29. Gillespie RJ, Popelier PLA (2001) Chemical bonding and molecular geometry from Lewis to electron densities. Oxford University Press, New York

    Google Scholar 

  30. Sood P, Chandrasekaran A, Day RO, Holmes RR (1998) Inorg Chem 37:6329

    Article  CAS  Google Scholar 

  31. Pauling L (1960) The Nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  32. Kolb U, Beuter M, Gerner M, Dräeger M (1994) Organometallics 13:4413

    Article  CAS  Google Scholar 

  33. Bader RF (1994) Atoms in molecules. A quantum theory. Oxford University Press, Oxford

    Google Scholar 

  34. Bader RFW (1991) Chem Rev 91:893

    Article  CAS  Google Scholar 

  35. Korlyukov AA, Lyssenko KA, Antipin MY, Kirin VN, Chernyshev EA, Knyazev SP (2002) Inorg Chem 41:5043

    Article  CAS  Google Scholar 

  36. Dobado JA, Martínez-García H, Molina J, Sundberg MR (1999) J Am Chem Soc 121:3156

    Article  CAS  Google Scholar 

  37. Ziólkowski M, Grabowski SJ, Leszczynski J (2006) J Phys Chem A 110:6514

    Article  Google Scholar 

  38. Parreira RLT, Caramori GF, Galembeck SE, Huguenin F (2008) J Phys Chem A 112:11731

    Article  CAS  Google Scholar 

  39. Mohajeri A, Alipour M, Mousaee M (2011) J Phys Chem A 115:4457

    Article  CAS  Google Scholar 

  40. Shaik S, Maitre JP, Sini G, Hiberty PC (1992) J Am Chem Soc 114:7861

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this work by CONACYT (Project 83157) is gratefully acknowledged. EGP and RRN fully acknowledge CONACYT for their scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José G. Alvarado-Rodríguez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guzmán-Percástegui, E., Cruz-Borbolla, J., Alvarado-Rodríguez, J.G. et al. Synthesis, Raman, X-ray diffraction, and density functional studies of antimony(III) heterotetracycles displaying intramolecular transannular interactions O → Sb. Struct Chem 24, 1555–1564 (2013). https://doi.org/10.1007/s11224-012-0173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0173-1

Keywords

  • Hypervalence
  • Antimony–thiolate complexes
  • Secondary interactions
  • DFT calculations