Skip to main content
Log in

Computational mechanistic study of methanol and molecular oxygen reaction on the triplet and singlet potential energy surfaces

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The reaction of CH3OH with the O2 on the triplet and singlet potential energy surfaces (PES) was carried out using the B3LYP, MP2, and CCSD(T)//B3LYP theoretical approaches in connection with the 6-311++G(3df–3pd) basis set. Three pre-reactive complexes, 1C1, 1C2, and 3C1, on the singlet and triplet PES were formed between methanol and molecular oxygen. From a variety of the complexes, seven types of products are obtained, of which four types are found to be thermodynamically stable. Results reveal that there exists one intersystem crossing between triplet and singlet PES. For P4 adduct that is the main and kinetically the most favorable product, the rate constants are calculated in the temperature range of 200–1,000 K in the reliable pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alecu IM, Truhlar DG (2011) J Phys Chem A 115:2811

    Article  CAS  Google Scholar 

  2. National Institute for Occupational Safety and Health (2008) The emergency response safety and health database: methanol. http://www.cdc.gov/niosh/ershdb/EmergencyResponseCard_29750029.html. Accessed 12 May 2011

  3. Danilov AM (2001) Chem Technol Fuels Oils 37:444

    Article  CAS  Google Scholar 

  4. Aronowitz D, Naegell DW, Glassman I (1977) J Phys Chem 81:2555

    Article  CAS  Google Scholar 

  5. Westbrook CK, Dryer FL (1980) Combust Flame 37:171

    Article  CAS  Google Scholar 

  6. Norton TS, Dryer FL (1990) Int J Chem Kinet 22:219

    Article  CAS  Google Scholar 

  7. Methanol Basics, U.S. environmental protection agency, EPA 400-F-92-009 Office of mobile sources

  8. Warnatz J (1984) Rate coefficients in the C/H/O system. In: Gardiner WC Jr (ed) Combustion chemistry. Springer, New York

  9. Norton TS, Dryer FL (1990) Proc Combust Inst 23:179

    Google Scholar 

  10. Norton TS, Dryer FL (1989) Combust Sci Technol 63:107

    Article  CAS  Google Scholar 

  11. Meagher JF, Kim P, Lee JH, Timmons RB (1974) J Phys Chem 78:2650

    Article  CAS  Google Scholar 

  12. Vandooren J, van Tiggelen PJ (1981) Experimental investigation of methanol oxidation in flames: mechanisms and rate constants of elementary steps. In: 18th Symposium on Combustion. Combustion Institute, Pittsburgh, p 473

  13. Do’be’ S, Be’rces T, Tura’nyi T, Ma’rta F, Grussdorf J, Temps F, Wagner HG (1996) J Phys Chem 100:19864

    Google Scholar 

  14. Johnson RD III, Hudgens JW (1996) J Phys Chem 100:19874

    Article  CAS  Google Scholar 

  15. Dertinger S, Geers A, Kappert J, Wiebrecht J (1995) Faraday Discuss R Soc 102:31

    Article  CAS  Google Scholar 

  16. Hess WP, Tully FP (1988) Chem Phys Lett 152:183

    Article  CAS  Google Scholar 

  17. Hoyermann K, Sievert R, Wagner HG (1981) Ber Bunsen-Ges Phys Chem 85:149

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03. Gaussian, Inc., Pittsburgh, PA

  19. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  20. Kugel R, Aube HT (1975) J Phys Chem 79:2130

    Article  CAS  Google Scholar 

  21. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  22. Cizek J (1969) Adv Chem Phys 14:35

    Article  CAS  Google Scholar 

  23. Rienstra-Kiracofe JC, Allen WD, Schaefer HF (2000) J Phys Chem A 104:9823

    Article  CAS  Google Scholar 

  24. Jayatilaka D, Lee TJ (1993) J Chem Phys 98:9734

    Article  CAS  Google Scholar 

  25. Peiro-Garcia J, Nebot-Gil I (2003) Chem Phys Chem 4:843

    Article  CAS  Google Scholar 

  26. Peiro-Garcia J, Nebot-Gil I (2003) J Comput Chem 24:1657

    Article  CAS  Google Scholar 

  27. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  28. Baker J (1986) J Comput Chem 7:385

    Article  CAS  Google Scholar 

  29. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  30. Moein G, Vahedpour M, Nazari F (2010) Chem Phys Lett 494:315

    Article  Google Scholar 

  31. Steinfeld JI, Francisco JS, Hase WL (1989) Chemical kinetics and dynamic. Prentice-Hall, Upper Saddle River

  32. Wigner EP (1932) Z Phys Chem Abt B 19:203

    Google Scholar 

  33. Eyring H (1935) J Chem Phys 3:107

    Article  CAS  Google Scholar 

  34. Miyoshi A (2010) Steady-state unimolecular master-equation solver (SSUMES). University of Tokyo, Tokyo

  35. Miyoshi A (2010) Gaussian post processor (GPOP). University of Tokyo, Tokyo

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Vahedpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shayan, K., Vahedpour, M. Computational mechanistic study of methanol and molecular oxygen reaction on the triplet and singlet potential energy surfaces. Struct Chem 24, 1051–1062 (2013). https://doi.org/10.1007/s11224-012-0128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0128-6

Keywords

Navigation