Uniaxial negative thermal expansion in crystals of tienoxolol


The thermal expansion of tienoxolol has been investigated by X-ray powder diffraction up to its melting temperature. The data indicate that the expansion is anisotropic and even negative in one direction of the unit cell. The supramolecular structure formed by hydrogen-bonds reflects that of a trellis, which explains the observed behavior of tienoxolol crystals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Cahn RW (1997) Nature 386:22–23

    Article  CAS  Google Scholar 

  2. 2.

    Evans JSO (1999) J Chem Soc Dalton Trans 3317–3326

  3. 3.

    Miller W, Smith CW, Mckenzie DS, Evans KE (2009) J Mater Sci 44:5441–5451

    Article  CAS  Google Scholar 

  4. 4.

    Grima JN, Zammit VRG (2006) Xjenza 11:17–29

    Google Scholar 

  5. 5.

    Chaplot SL (2005) Curr Sci 88(3):347–349

    Google Scholar 

  6. 6.

    Marinkovic BA, Jardim MM, DeAvillez RRFR (2005) Solid State Sci 7:1377–1383

    Article  CAS  Google Scholar 

  7. 7.

    Li J, Yokochi A, Amos TG, Sleight AW (2002) Chem Mater 14:2602–2606

    Article  CAS  Google Scholar 

  8. 8.

    Ernst G, Broholm C, Kowach GR, Ramirez AP (1998) Nature 396:147–149

    Article  CAS  Google Scholar 

  9. 9.

    Amos TG, Sleight AW (2001) J Solid State Chem 160:230–238

    Article  CAS  Google Scholar 

  10. 10.

    Lock N, Wu Y, Christensen M, Cameron LJ, Peterson VK, Bridgemann AJJ, Keppert CJ, Iversen BB (2010) J Phys Chem C 114:16181–16186

    Article  CAS  Google Scholar 

  11. 11.

    Han SS, Goddard WA III (2007) J Phys Chem C 111(42):15185–15191

    Article  CAS  Google Scholar 

  12. 12.

    Conterio MJ, Goodwin AJ, Tucker MG, Keen DA, Dover MT, Peters L, Evans JSO (2008) J Phys Condens Matter 20:255225–255238

    Article  Google Scholar 

  13. 13.

    Calleja M, Goodwin AJ, Dove MT (2008) J Phys Condens Matter 20:255226–255235

    Article  Google Scholar 

  14. 14.

    Korcock J, Katz MJ, Leznoff DB (2009) JACS 131:4866–4871

    Article  Google Scholar 

  15. 15.

    Stobbe RA, Hägele PC (1996) J Polym Sci Part B Polym Phys 34:975–980

    Article  CAS  Google Scholar 

  16. 16.

    Aasmundveit KA, Samuelsen EJ, Koffmnn K, Bakken E, Carlsen PHJ (2000) Synth Met 113:7–18

    Article  Google Scholar 

  17. 17.

    Baughman RH (1973) J Chem Phys 58(7):1679608–1679616

    Article  Google Scholar 

  18. 18.

    Röttger K, Endriss A, Ihringer J, Doyle S, Kuhrs WF (1994) Acta Crystallogr Sect B Struct Sci 50:644–648

    Article  Google Scholar 

  19. 19.

    Fortes AD, Suard E, Knight KS (2011) Science 331:741–746

    Article  Google Scholar 

  20. 20.

    Zhao LCZ (2009) J Phys Chem C 113(39):16860–16862

    Article  CAS  Google Scholar 

  21. 21.

    Das D, Jacobs T, Barbour LJ (2010) Nature Mater 9:36–39

    Article  CAS  Google Scholar 

  22. 22.

    Birkedal H, Scharzenbach D, Pattison P (2002) Angew Chem 114(5):780–782

    Article  Google Scholar 

  23. 23.

    Salud J, Barrio M, Lopez DO, Tamarit JL, Alcobé X (1998) J Appl Crystallogr 31:748–757

    Article  CAS  Google Scholar 

  24. 24.

    Welche PRL, Heine V, Dove MT (1998) Phys Chem Miner 26:63–77

    Article  CAS  Google Scholar 

  25. 25.

    Pryde AKA, Hammonds KD, Dove MT, Heine V, Gale JD, Warren MC (1996) J Phys Condens Matter 8(50):10973

    Article  CAS  Google Scholar 

  26. 26.

    Tao JZ, Sleight AW (2003) Solid State Chem 173:442–448

    Article  CAS  Google Scholar 

  27. 27.

    Heine V, Welche PRL (1999) J Am Ceram Soc 82(7):1793–1802

    Article  CAS  Google Scholar 

  28. 28.

    Mahé N, Do B, Nicolaï B, Rietveld IB, Barrio M, Tamarit J-L, Céolin R, Guéchot C, Teulon J-M (2012) Int J Pharm 422(1–2):47–51

    Google Scholar 

  29. 29.

    Rodriguez-Carvajal J (1993) Physica B 192:55

    Google Scholar 

  30. 30.

    Negrier P, Pardo LC, Salud J, Tamarit JL, Barrio M, Lopez D, Wurflinger A, Mondieig D (2002) Chem Mater 14:1921–1929

    Article  CAS  Google Scholar 

  31. 31.

    Parat B, Pardo LC, Barrio M, Tamarit JL, Negrier P, Salud J, Lopez DO, Mondieig D (2005) Chem Mater 17:3359–3365

    Article  CAS  Google Scholar 

  32. 32.

    Authier A (ed) (2006) International tables for crystallography D: physical properties of crystals, vol 1.4. Kluwer, Dordrecht

  33. 33.

    Belousov RI, Filatov SK (2007) Glass Phys Chem 33(3):271–275

    Article  CAS  Google Scholar 

  34. 34.

    Nicolaï B, Mahé N, Céolin R, Rietveld IB, Barrio M, Tamarit J-L (2011) Struct Chem 22:649–659

    Article  Google Scholar 

  35. 35.

    Fortes AD, Wood IG, Knight KS (2008) Phys Chem Miner 35:207–221

    Article  CAS  Google Scholar 

  36. 36.

    Negrier P, Barrio M, Tamarit JL, Veglio N, Mondieig D (2010) Cryst Growth Des 10:2793–2800

    Article  CAS  Google Scholar 

  37. 37.

    Kimber SAJ, Argyriou DN, Yokaichiya F, Habicht K, Gerischer S, Hansen T, Chatterji T, Klingeler R, Hess C, Behr G, Kondrat A, Büchner B (2008) Phys Rev B 78:140503

    Google Scholar 

  38. 38.

    Weigel D, Beguemsi T, Garnier P, Berar JF (1978) J Solid State Chem 23(3–4):241–251

    Google Scholar 

  39. 39.

    Etter MC (1990) Acc Chem Res 23(4):120–126

    Article  CAS  Google Scholar 

  40. 40.

    Etter MC, McDonald J, Bernstein J (1990) Acta Crystallogr Sect B 46: 256–262

    Google Scholar 

  41. 41.

    Kaminski W (2004) WinTensor. http://cad4.cpac.washington.edu/WinXMorphHome/WinTensorhome/WinTensor.htm

Download references


RC thank the Generalitat de Catalunya (2007PIV00011) for an invited position at the Universitat Politècnica de Catalunya. Part of this study was supported by MICINN (grant FIS2011-24439).

Author information



Corresponding author

Correspondence to Béatrice Nicolaï.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nicolaï, B., Rietveld, I.B., Barrio, M. et al. Uniaxial negative thermal expansion in crystals of tienoxolol. Struct Chem 24, 279–283 (2013). https://doi.org/10.1007/s11224-012-0078-z

Download citation


  • Drug
  • Active pharmaceutical ingredient (API)
  • Crystal structure
  • Solid state